Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review

被引:2
作者
Gallo, Matthew C. [1 ]
Elias, Aura [1 ]
Reynolds, Julius [1 ]
Ball, Jacob R. [1 ]
Lieberman, Jay R. [1 ,2 ]
机构
[1] Univ Southern Calif, Dept Orthopaed Surg, Keck Sch Med, Los Angeles, CA 90033 USA
[2] Univ Southern Calif, Viterbi Sch Engn, Alfred E Mann Dept Biomed Engn, Los Angeles, CA 90089 USA
来源
BIOENGINEERING-BASEL | 2025年 / 12卷 / 02期
关键词
gene therapy; tissue engineering; bone defect; bone graft; bone regeneration; BMP-2; osteoinductive; mesenchymal stem cells;
D O I
10.3390/bioengineering12020120
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it allows for local implantation of nucleic acids or genetically modified cells to direct specific protein expression. In cell-based gene therapy approaches, a variety of different cell types have been described including mesenchymal stem cells (MSCs) derived from multiple sources-bone marrow, adipose, skeletal muscle, and umbilical cord tissue, among others. MSCs, in particular, have been well studied, as they serve as a source of osteoprogenitor cells in addition to providing a vehicle for transgene delivery. Furthermore, MSCs possess immunomodulatory properties, which may support the development of an allogeneic "off-the-shelf" gene therapy product. Identifying an optimal cell type is paramount to the successful clinical translation of cell-based gene therapy approaches. Here, we review current strategies for the management of segmental bone loss in orthopedic surgery, including bone grafting, bone graft substitutes, and operative techniques. We also highlight regional gene therapy as a tissue engineering strategy for bone repair, with a focus on cell types and cell sources suitable for this application.
引用
收藏
页数:35
相关论文
共 267 条
[31]   Repair of large segmental bone defects: BMP-2 gene activated muscle grafts vs. autologous bone grafting [J].
Betz, Oliver B. ;
Betz, Volker M. ;
Schroeder, Christian ;
Penzkofer, Rainer ;
Goettlinger, Michael ;
Mayer-Wagner, Susanne ;
Augat, Peter ;
Jansson, Volkmar ;
Mueller, Peter E. .
BMC BIOTECHNOLOGY, 2013, 13
[32]   Healing of segmental bone defects by direct percutaneous gene delivery: Effect of vector dose [J].
Betz, Volker M. ;
Betz, Oliver B. ;
Glatt, Vaida ;
Gerstenfeld, Louis C. ;
Einhorn, Thomas A. ;
Bouxsein, Mary L. ;
Vrahas, Mark S. ;
Evans, Christopher H. .
HUMAN GENE THERAPY, 2007, 18 (10) :907-915
[33]   BMP gene delivery for skeletal tissue regeneration [J].
Bez, Maxim ;
Pelled, Gadi ;
Gazit, Dan .
BONE, 2020, 137
[34]   In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs [J].
Bez, Maxim ;
Sheyn, Dmitriy ;
Tawackoli, Wafa ;
Avalos, Pablo ;
Shapiro, Galina ;
Giaconi, Joseph C. ;
Da, Xiaoyu ;
Ben David, Shiran ;
Gavrity, Jayne ;
Awad, Hani A. ;
Bae, Hyun W. ;
Ley, Eric J. ;
Kremen, Thomas J. ;
Gazit, Zulma ;
Ferrara, Katherine W. ;
Pelled, Gadi ;
Gazit, Dan .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (390)
[35]   In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells [J].
Bielby, RC ;
Boccaccini, AR ;
Polak, JM ;
Buttery, LDK .
TISSUE ENGINEERING, 2004, 10 (9-10) :1518-1525
[36]   The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells [J].
Blum, Barak ;
Bar-Nur, Ori ;
Golan-Lev, Tamar ;
Benvenisty, Nissim .
NATURE BIOTECHNOLOGY, 2009, 27 (03) :281-287
[37]   Localized, direct plasmid gene delivery in vivo:: prolonged therapy results in reproducible tissue regeneration [J].
Bonadio, J ;
Smiley, E ;
Patil, P ;
Goldstein, S .
NATURE MEDICINE, 1999, 5 (07) :753-759
[38]   Osteoprogenitor cells within skeletal muscle [J].
Bosch, P ;
Musgrave, DS ;
Lee, JY ;
Cummins, J ;
Shuler, F ;
Ghivizzani, SC ;
Evans, C ;
Robbins, PD ;
Huard, J .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2000, 18 (06) :933-944
[39]   Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells [J].
Both, Sanne K. ;
van Apeldoorn, Aart A. ;
Jukes, Jojanneke M. ;
Englund, Mikael C. O. ;
Hyllner, Johan ;
van Blitterswijk, Clemens A. ;
de Boer, Jan .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 5 (03) :180-190
[40]   Limited potential of AAV-mediated gene therapy in transducing human mesenchymal stem cells for bone repair applications [J].
Bougioukli, Sofia ;
Chateau, Morgan ;
Morales, Heidy ;
Vakhshori, Venus ;
Sugiyama, Osamu ;
Oakes, Daniel ;
Longjohn, Donald ;
Cannon, Paula ;
Lieberman, Jay R. .
GENE THERAPY, 2021, 28 (12) :729-739