On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials

被引:4
作者
Ayman-Mursaleen, Mohammad [1 ]
Nasiruzzaman, Md. [2 ]
Rao, Nadeem [3 ]
机构
[1] Univ Ostrava, Fac Sci, Dept Math, Mlynska 702-5, Ostrava 70200, Czech Republic
[2] Univ Tabuk, Fac Sci, Dept Math, POB 4279, Tabuk 71491, Saudi Arabia
[3] Chandigarh Univ, Univ Ctr Res Dev, Dept Math, Mohali 140413, Punjab, India
关键词
Sz & aacute; sz-Mirakyan operators; Exponential function; Appell polynomials; Dunkl properties; Modulus of continuity; Lipschitz functions; CONVERGENCE; SUMMABILITY; KOROVKIN;
D O I
10.1007/s40995-025-01782-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this present article is to illustrate the approximation and related properties of Sz & aacute;sz-Jakimovski-Leviatan type operators constructed using Beta functions. In this context, approximations are obtained by constructing a new class of Sz & aacute;sz-Jakimovski-Leviatan Beta type operators, which are introduced through the Appell polynomials in Dunkl formulations. In the investigations, the approximation is studied in Korovkin's and weighted Korovkin's spaces involving local and global approximations. The rate of convergence is also obtained in terms of the weighted modulus of continuity, Lipschitz functions, Peetre's K-functional, and some direct theorems. Consequently, in the final paragraph, approximations are studied through A-statistical convergence.
引用
收藏
页码:1013 / 1022
页数:10
相关论文
共 36 条
[1]   A Dunkl type generalization of Szasz operators via post-quantum calculus [J].
Alotaibi, Abdullah ;
Nasiruzzaman, Md. ;
Mursaleen, M. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[2]  
Appell P., 1880, Ann. Sci. Ecole. Norm. Sup, V9, P119, DOI [10.24033/asens.186, DOI 10.24033/ASENS.186]
[3]  
Aslan R, 2025, IRAN J SCI, V49, P481, DOI 10.1007/s40995-024-01754-1
[4]   A Note on Approximation of Blending Type Bernstein-Schurer-Kantorovich Operators with Shape Parameter α [J].
Ayman-Mursaleen, Mohammad ;
Rao, Nadeem ;
Rani, Mamta ;
Kilicman, Adem ;
Al-Abied, Ahmed Ahmed Hussin Ali ;
Malik, Pradeep .
JOURNAL OF MATHEMATICS, 2023, 2023
[5]   Approximation by Riemann-Liouville type fractional α -Bernstein-Kantorovich operators [J].
Berwal, Sahil ;
Mohiuddine, S. A. ;
Kajla, Arun ;
Alotaibi, Abdullah .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) :8275-8288
[6]   Approximation by Chlodowsky type Jakimovski-Leviatan operators [J].
Buyukyazici, Ibrahim ;
Tanberkan, Hande ;
Serenbay, Sevilay Kirci ;
Atakut, Cigdem .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :153-163
[7]   Approximation by a new Stancu variant of generalized (λ, μ)-Bernstein operators [J].
Cai, Qing-Bo ;
Aslan, Resat ;
Ozger, Faruk ;
Srivastava, Hari Mohan .
ALEXANDRIA ENGINEERING JOURNAL, 2024, 107 :205-214
[8]   ON STRONG MATRIX SUMMABILITY WITH RESPECT TO A MODULUS AND STATISTICAL CONVERGENCE [J].
CONNOR, J .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (02) :194-198
[9]  
DeVore RA., 1993, CONSTR APPR, DOI [10.1007/978-3-662-02888-9, DOI 10.1007/978-3-662-02888-9]
[10]   THEOREMS OF KOROVKIN TYPE [J].
GADZHIEV, AD .
MATHEMATICAL NOTES, 1976, 20 (5-6) :995-998