Fluorinated-cardo-based thermally rearranged membranes with enhanced gas separation performance for CO2 capture and hydrogen separation

被引:1
|
作者
Fan, Fangxu [1 ]
Sun, Yongchao [1 ]
Bai, Lu [1 ]
Li, Tianyou [1 ]
Gao, Zeyuan [1 ]
He, Gaohong [1 ]
Ma, Canghai [1 ]
机构
[1] Dalian Univ Technol, R&D Ctr Membrane Sci & Technol, Sch Chem Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermally rearranged membranes; Fluorinated-cardo; Plasticization resistance; CO2; separation; POLYMERS; TR; TRANSPORT;
D O I
10.1016/j.memsci.2025.123843
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Thermally rearranged (TR) material has emerged as a focal point in gas separation membranes. However, further enhancing the gas separation performance of TR materials remains a key hurdle. In this study, fluorinated-cardobased diamine (FFDA) was strategically incorporated into the polybenzoxazole structure to improve the gas selectivity. The size-sieving ability of the polymers was significantly enhanced through the interchain hydrogen bonding and it-it stacking induced by the cardo groups. Furthermore, the aromatic fluorine atoms in FFDA exhibited superior CO2 adsorption capacity. As the thermal rearrangement progressed and the polybenzoxazole structure developed, pores with a diameter of approximately 3 & Aring; were formed, leading to increased diffusion rate of CO2 and H2. The TR400 degrees C membranes surpassed the 2018 CO2/CH4 mixed-gas upper bound. Particularly, the 6FDA-FFDA/6FAP(1:1)-TR400 membrane achieved a CO2 permeability of 185.3 Barrer and a CO2/CH4 selectivity of 79.9-representing increases of 227.3 % and 37.5 %, respectively, compared to the precursor membranes. Moreover, the robust structure of the membrane demonstrated enhanced plasticization resistance, with no discernible plasticization observed under CO2/CH4 mixed-gas conditions up to 20 bar. Our design approach paves the way for developing mechanically robust and highly selective TR membranes, with significant potentials for application in CO2 separation under aggressive conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Molecular design of nanohybrid gas separation membranes for optimal CO2 separation
    Lau, Cher Hon
    Paul, Donald R.
    Chung, Tai Shung
    POLYMER, 2012, 53 (02) : 454 - 465
  • [32] Thermally Rearranged (TR) Poly(ether-benzoxazole) Membranes for Gas Separation
    Calle, Mariola
    Lee, Young Moo
    MACROMOLECULES, 2011, 44 (05) : 1156 - 1165
  • [33] Advanced CO2 separation technologies: coal gasification, warm-gas cleanup, and hydrogen separation membranes
    Stanislowski, J. J.
    Holmes, M. J.
    Snyder, A. C.
    Tolbert, S. G.
    Curran, T. J.
    GHGT-11, 2013, 37 : 2316 - 2326
  • [34] Thermal rearranged poly(benzoxazole)/polyimide blended membranes for CO2 separation
    Scholes, Colin A.
    Ribeiro, Claudio P.
    Kentish, Sandra E.
    Freeman, Benny D.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2014, 124 : 134 - 140
  • [35] Thermally rearranged poly(benzoxazole-co-imide) hollow fiber membranes for CO2 capture
    Woo, Kyung Taek
    Lee, Jongmyeong
    Dong, Guangxi
    Kim, Ju Sung
    Do, Yu Seong
    Jo, Hye Jin
    Lee, Young Moo
    JOURNAL OF MEMBRANE SCIENCE, 2016, 498 : 125 - 134
  • [36] High performance composite CO2 separation membranes
    Patricio, S. G.
    Papaioannou, E.
    Zhang, G.
    Metcalfe, I. S.
    Marques, F. M. B.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 471 : 211 - 218
  • [37] On the Model Performance of Composite CO2 Separation Membranes
    Marques, F. M. B.
    Patricio, S. G.
    Muccillo, E.
    Muccillo, R.
    ELECTROCHIMICA ACTA, 2016, 210 : 87 - 95
  • [38] High performance polymer membranes for CO2 separation
    Kim, Seungju
    Lee, Young Moo
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2013, 2 (02) : 238 - 244
  • [39] CO2 separation by supported ionic liquid membranes and prediction of separation performance
    Liu, Zhen
    Liu, Cheng
    Li, Longfei
    Qin, Wei
    Xu, Airong
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 53 : 79 - 84
  • [40] CO2 capture and gas separation on boron carbon nanotubes
    Sun, Qiao
    Wang, Meng
    Li, Zhen
    Ma, Yingying
    Du, Aijun
    CHEMICAL PHYSICS LETTERS, 2013, 575 : 59 - 66