Bounds on the dimension of lineal extensions

被引:0
作者
Bushling, Ryan E. G. [1 ]
Fiedler, Jacob B. [2 ]
机构
[1] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
[2] Univ Wisconsin Madison, Dept Math, 480 Lincoln Dr,213 Van Vleck Hall, Madison, WI 53706 USA
关键词
algorithmic complexity; Kakeya conjecture; Furstenberg sets; SETS;
D O I
10.4171/JFG/161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E c Rn be a union of line segments and F c Rn the set obtained from E by extending each line segment in E to a full line. Keleti's line segment extension conjecture posits that the Hausdorff dimension of F should equal that of E. Working in R2, we use effective methods to prove a strong packing dimension variant of this conjecture. Furthermore, a key inequality in this proof readily entails the planar case of the generalized Kakeya conjecture for packing dimension. This is followed by several doubling estimates in higher dimensions and connections to related problems.
引用
收藏
页码:105 / 133
页数:29
相关论文
共 22 条
[1]  
Altaf I, 2024, Arxiv, DOI arXiv:2305.06937
[2]   Mutual Dimension [J].
Case, Adam ;
Lutz, Jack H. .
ACM TRANSACTIONS ON COMPUTATION THEORY, 2015, 7 (03)
[3]  
Falconer K., 2014, Fractal geometry: Mathematical foundation and application
[4]   Strong Marstrand theorems and dimensions of sets formed by subsets of hyperplanes [J].
Falconer, Kenneth ;
Mattila, Pertti .
JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (04) :319-329
[5]   The packing dimension of projections and sections of measures [J].
Falconer, KJ ;
Mattila, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 :695-713
[6]  
Fraser JM, 2017, REAL ANAL EXCH, V42, P253
[7]  
Hatano K., 1971, Hiroshima Mathematical Journal, V1, P17, DOI [10.32917/hmj/1206138139, DOI 10.32917/HMJ/1206138139]
[8]   Hausdorff dimension of unions of affine subspaces and of Furstenberg-type sets [J].
Hera, Kornelia ;
Keleti, Tunas ;
Mathe, Andras .
JOURNAL OF FRACTAL GEOMETRY, 2019, 6 (03) :263-284
[9]  
Jarvenpaa M., 1994, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes
[10]  
Keleti T, 2022, Arxiv, DOI arXiv:2203.15731