Absence of anomalous dissipation for weak solutions of the Maxwell-Stefan system

被引:0
|
作者
Berselli, Luigi C. [1 ]
Georgiadis, Stefanos [2 ,3 ]
Tzavaras, Athanasios E. [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Via F Buonarroti 1 C, I-I56127 Pisa, Italy
[2] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[3] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
gas mixture; Maxwell-Stefan equations; isothermal model; nonequilibrium thermodynamics; anomalous dissipation; ENERGY-CONSERVATION; EULER;
D O I
10.1088/1361-6544/ada7b8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a short and self-contained proof of the fact that weak solutions to the Maxwell-Stefan system automatically satisfy an entropy equality, establishing the absence of anomalous dissipation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Global existence of weak solutions and weak-strong uniqueness for nonisothermal Maxwell-Stefan systems
    Georgiadis, Stefanos
    Juengel, Ansgar
    NONLINEARITY, 2024, 37 (07)
  • [2] WEAK-STRONG UNIQUENESS FOR MAXWELL-STEFAN SYSTEMS
    Huo, Xiaokai
    Jungel, Ansgar
    Tzavaras, Athanasios E.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3215 - 3252
  • [3] MORE ON EXACT-SOLUTIONS OF THE MAXWELL-STEFAN EQUATIONS
    TAYLOR, R
    CHEMICAL ENGINEERING COMMUNICATIONS, 1982, 14 (3-6) : 121 - 122
  • [5] On the relaxation of the Maxwell-Stefan system to linear diffusion
    Salvarani, Francesco
    Soares, Ana Jacinta
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 15 - 21
  • [6] Maxwell-Stefan approach in extractor design
    Zimmermann, A., 1600, Elsevier Science S.A., Lausanne, Switzerland (57):
  • [7] Negative Maxwell-Stefan diffusion coefficients
    Kraaijeveld, Gerrit
    Wesselingh, Johannes A.
    Industrial and Engineering Chemistry Research, 1993, 32 (04): : 738 - 742
  • [8] MAXWELL-STEFAN APPROACH IN EXTRACTOR DESIGN
    ZIMMERMANN, A
    JOULIA, X
    GOURDON, C
    GORAK, A
    CHEMICAL ENGINEERING JOURNAL AND THE BIOCHEMICAL ENGINEERING JOURNAL, 1995, 57 (02): : 229 - 236
  • [9] The Maxwell-Stefan description of binary diffusion
    Bringuier, E.
    EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (05) : 1103 - 1126
  • [10] The Maxwell-Stefan formulation of diffusion in zeolites
    Krishna, R.
    Fluid Transport in Nanoporous Materials, 2006, 219 : 211 - 240