Characteristic subgroups and the R∞-property for virtual braid groups

被引:0
|
作者
Dekimpe, Karel [1 ]
Goncalves, Daciberg Lima [2 ]
Ocampo, Oscar [3 ]
机构
[1] KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, BE-8500 Kortrijk, Belgium
[2] Univ Sao Paulo, IME, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Fed Bahia, IME, Dept Matemat, Av Milton Santos S N, BR-40170110 Salvador, BA, Brazil
关键词
Braid group; Virtual braid group; R-infinity-property; TWISTED CONJUGACY CLASSES; BAUMSLAG;
D O I
10.1016/j.jalgebra.2024.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n >= 2. Let V B-n , (resp. V P-n) denote the virtual braid group (resp. virtual pure braid group), let WBn , (resp. WPn) denote the welded braid group (resp. welded pure braid group) and let UV B-n , (resp. UV P-n) denote the unrestricted virtual braid group (resp. unrestricted virtual pure braid group). In the first part of this paper we prove that, for n >= 4, the group V P, , and for n >= 3 the groups WPn and UV P-n are characteristic subgroups of V B-n , WB(n )and UV B-n , respectively. In the second part of the paper we show that, for n >= 2, the virtual braid group V B-n , the unrestricted virtual pure braid group UV P-n , and the unrestricted virtual braid group UV B-n , have the R-infinity-property. . As a consequence of the technique used for few strings we also prove that, for n = 2, , 3, , 4, the welded braid group WBn, has the R-infinity-property and that for n = 2 the corresponding pure braid groups have the R-infinity-property. On the other hand for n >= 3 it is unknown if the R-infinity-property holds or not for the virtual pure braid group V P-n and the welded pure braid group WPn . (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:20 / 47
页数:28
相关论文
共 50 条
  • [21] Affine braid groups: a better platform than braid groups for cryptology?
    Zhu, Ping
    Wen, Qiaoyan
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2011, 22 (5-6) : 375 - 391
  • [22] Orders on braid groups
    N. Ya. Medvedev
    Algebra and Logic, 2003, 42 (3) : 177 - 180
  • [23] Braid groups are linear
    Bigelow, SJ
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) : 471 - 486
  • [24] Braid groups in cryptology
    Lee, EK
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (05): : 986 - 992
  • [25] Diagram groups, braid groups, and orderability
    Wiest, B
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2003, 12 (03) : 321 - 332
  • [26] Braid groups and symplectic Steinberg groups
    Digne, Francois
    Kassel, Christian
    ANNALS OF K-THEORY, 2023, 8 (04) : 669 - 692
  • [27] Diagrammatics for Coxeter groups and their braid groups
    Elias, Ben
    Williamson, Geordie
    QUANTUM TOPOLOGY, 2017, 8 (03) : 413 - 457
  • [28] Parametrized braid groups of Chevalley groups
    Loday, JL
    Stein, MR
    DOCUMENTA MATHEMATICA, 2005, 10 : 391 - 416
  • [29] The R∞-property and commensurability for nilpotent groups
    Lathouwers, Maarten
    Witdouck, Thomas
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (02) : 602 - 616
  • [30] Commutator subgroups and crystallographic quotients of virtual extensions of symmetric groups
    Kumar, Pravin
    Naik, Tushar Kanta
    Nanda, Neha
    Singh, Mahender
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (11)