Artificial intelligence in cardiac metabolism: the next frontier in cardiovascular health

被引:0
作者
Chen, An-Tian [1 ]
Zhang, Yuhui [2 ]
Zhang, Jian [2 ,3 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Ctr Cardiovasc Dis, Dept Cardiol, Beijing 100037, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Heart Failure Ctr, Natl Ctr Cardiovasc Dis, North Lishi Rd,Beijing 167, Beijing 100037, Peoples R China
[3] Natl Hlth Comm, Key Lab Clin Res Cardiovasc Medicat, Beijing 100037, Peoples R China
来源
METABOLISM AND TARGET ORGAN DAMAGE | 2025年 / 5卷 / 01期
基金
北京市自然科学基金;
关键词
Artificial intelligence; cardiac metabolism; cardiovascular disease;
D O I
10.20517/mtod.2024.82
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In this article, we aim to explore the rapidly developing role of artificial intelligence (AI) in cardiac metabolism research, highlighting its impact on biomarker discovery, precision medicine, and patient stratification. Cardiac metabolism, a key determinant of cardiovascular health, is often disrupted in cardiovascular diseases (CVDs) like heart failure and coronary artery disease. AI's ability to process and analyze large-scale data offers new chances for understanding and addressing these metabolic dysfunctions. By integrating up-to-date technologies with molecular and clinical insights, AI enables the achievement of personalized treatments, more accurate diagnostics, and the discovery of potential novel therapeutic targets. The main challenges include ethical concerns around data privacy, algorithmic bias, and the need for representative datasets. Future directions focus on developing transparent, accountable, and collaborative AI models that integrate data and enable real-time monitoring, ensuring fairness and accessibility in healthcare. As AI continues to evolve, its role in advancing cardiovascular care is expected to grow, offering new trends in cardiovascular research.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Editorial: Artificial intelligence: the new frontier in digital humanities [J].
Frontoni, Emanuele ;
Paolanti, Marina ;
Migliorelli, Lucia ;
Pietrini, Rocco ;
Asimakopoulos, Stavros .
FRONTIERS IN COMPUTER SCIENCE, 2024, 6
[42]   Artificial Intelligence and Hypertension: A Growing Frontier in Medical Research [J].
Budiono, Enrico Ananda ;
Zaidan, Marsa ;
Nurrahma, Meutia ;
Wadoe, Samuel Ferdinand ;
Naufal, Daffa Athallah .
JOURNAL OF HYPERTENSION, 2025, 43 (SUPPL 2)
[43]   Role of Artificial Intelligence in Cardiovascular Imaging [J].
Keser, Nurgul .
ANATOLIAN JOURNAL OF CARDIOLOGY, 2019, 22 :10-12
[44]   Artificial Intelligence in Cardiovascular Clinical Trials [J].
Cunningham, Jonathan W. ;
Abraham, William T. ;
Bhatt, Ankeet S. ;
Dunn, Jessilyn ;
Felker, G. Michael ;
Jain, Sneha S. ;
Lindsell, Christopher J. ;
Mace, Matthew ;
Martyn, Trejeeve ;
Shah, Rashmee U. ;
Tison, Geoffrey H. ;
Fakhouri, Tala ;
Psotka, Mitchell A. ;
Krumholz, Harlan ;
Fiuzat, Mona ;
O'Connor, Christopher M. ;
Solomon, Scott D. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 84 (20) :2051-2062
[45]   Artificial Intelligence in Cardiovascular Atherosclerosis Imaging [J].
Zhang, Jia ;
Han, Ruijuan ;
Shao, Guo ;
Lv, Bin ;
Sun, Kai .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03)
[46]   Artificial intelligence in the diagnosis of cardiovascular disease [J].
Campos Zeron, Rubens Moura ;
Serrano Junior, Carlos Vicente .
REVISTA DA ASSOCIACAO MEDICA BRASILEIRA, 2019, 65 (12) :1438-1441
[47]   The future of artificial intelligence in cardiovascular monitoring [J].
Greco, Massimiliano ;
Lubian, Marta ;
Cecconi, Maurizio .
CURRENT OPINION IN CRITICAL CARE, 2025, 31 (03) :354-359
[48]   The Next Generation of Artificial Intelligence: Synthesizable AI [J].
Mukhopadhyay, Supratik ;
Iyengar, S. S. ;
Madni, Asad M. ;
Di Biano, Robert .
PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2018, VOL 1, 2019, 880 :659-677
[49]   Teaching (with) Artificial Intelligence: The Next Twenty Years [J].
Michels, Steven .
JOURNAL OF POLITICAL SCIENCE EDUCATION, 2024, 20 (04) :510-521
[50]   Comparison of Supervised Techniques of Artificial Intelligence in the Prediction of Cardiovascular Diseases [J].
Comas-Gonzalez, Z. ;
Mardini-Bovea, J. ;
Salcedo, D. ;
De-la-Hoz-Franco, E. .
HCI INTERNATIONAL 2023 LATE BREAKING PAPERS, HCII 2023, PT VI, 2023, 14059 :58-68