Uniform bounded elementary generation of Chevalley groups

被引:1
作者
Kunyavskii, Boris [1 ]
Plotkin, Eugene [1 ]
Vavilov, Nikolai [2 ]
机构
[1] Bar Ilan Univ, Dept of Math, Ramat Gan, Israel
[2] St Petersburg State Univ, Dept Math & Comp Sci, St Petersburg, Russia
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2024年
关键词
Chevalley groups; Dedekind rings; bounded generation; RINGS;
D O I
10.4153/S0008414X24000713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a definitive result which almost completely closes the problem of bounded elementary generation for Chevalley groups of rank >= 2 over arbitrary Dedekind rings R of arithmetic type, with uniform bounds. Namely, we show that for every reduced irreducible root system Phi of rank >= 2, there exists a universal bound L = L (Phi) such that the simply connected Chevalley groups G (Phi, R) have elementary width <= L for all Dedekind rings of arithmetic type R .
引用
收藏
页数:28
相关论文
共 44 条
[21]   Bounded generation of SL2 over rings of S-integers with infinitely many units [J].
Morgan, Aleksander, V ;
Rapinchuk, Andrei S. ;
Sury, Balasubramanian .
ALGEBRA & NUMBER THEORY, 2018, 12 (08) :1949-1974
[22]  
Morris D. W., 2007, NEW YORK J MATH, V13, P383
[23]  
Murty V. K., 1994, CANAD MATH SOC C P, V15, P249
[24]   On bounded elementary generation for SL n over polynomial rings [J].
Nica, Bogdan .
ISRAEL JOURNAL OF MATHEMATICS, 2018, 225 (01) :403-410
[25]   On the stability of the K1-functor for Chevalley groups of type E7 [J].
Plotkin, E .
JOURNAL OF ALGEBRA, 1998, 210 (01) :67-85
[26]   SOME ARITHMETIC PROPERTIES OF SUBRINGS OF FUNCTION FIELDS OVER FINITE-FIELDS [J].
QUEEN, C .
ARCHIV DER MATHEMATIK, 1975, 26 (01) :51-56
[27]   S-UNITS AND S-CLASS GROUP IN ALGEBRAIC FUNCTION FIELDS [J].
ROSEN, M .
JOURNAL OF ALGEBRA, 1973, 26 (01) :98-108
[28]  
SERRE JP, 1970, ANN MATH, V92, P489
[29]   Decompositions of congruence subgroups of Chevalley groups [J].
Sinchuk, Sergey ;
Smolensky, Andrei .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (06) :935-958
[30]  
Smolensky A, 2012, INT J GROUP THEORY, V1, P3