MMW-YOLOv5: A Multi-Scale Enhanced Traffic Sign Detection Algorithm

被引:0
|
作者
Wang, Tong [1 ,2 ]
Zhang, Juwei [1 ,2 ,4 ]
Ren, Bingyi [2 ,3 ]
Liu, Bo [1 ,2 ]
机构
[1] Henan Univ Sci & Technol, Coll Informat Engn, Luoyang 471023, Henan, Peoples R China
[2] Henan New Energy Vehicle Power Elect & Elect Drive, Luoyang 471023, Peoples R China
[3] Henan Univ Sci & Technol, Sch Mechatron Engn, Luoyang 471003, Henan, Peoples R China
[4] Zhengzhou Univ Aeronaut, Sch Elect & Informat, Zhengzhou 450046, Henan, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Feature extraction; YOLO; Accuracy; Detection algorithms; Convolutional neural networks; Real-time systems; Convergence; Roads; Optimization; Traffic control; Object detection; Traffic sign detection; deep learning; YOLOv5; multi-scale fusion; object detection;
D O I
10.1109/ACCESS.2024.3476371
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign detection is a crucial component of the autonomous driving field, where real-time performance and accuracy play a significant role in ensuring vehicle safety. This paper aims to improve the detection performance of multi-scale traffic sign targets and proposes an enhanced multi-scale traffic sign detection algorithm MMW-YOLOv5 based on the YOLOv5 algorithm. The algorithm first uses a multi-scale fusion network (MSFNet) on the neck, which significantly enhances the algorithm's fusion capabilities for multi-scale features and its ability to detect small-sized targets. Secondly, the C3 bottleneck structure in the trunk and neck used to process small-scale feature maps is replaced with the multi-scale feature extraction bottleneck module (MSFEBM) to obtain rich multi-scale feature information and facilitate multi-scale target detection. Finally, the positioning regression function Wise-MPDIoU (WMPDIoU) is used to further improve the overall accuracy of the model and accelerate the convergence speed of the network. Experimental results show that the detection accuracy of the MMW-YOLOv5 algorithm on the TT100K data set reached 87.1% mAP@0.5 and 53.7% mAP@0.5:0.95, which were improved by 6.6% and 5.1% respectively compared with the baseline model.
引用
收藏
页码:148880 / 148892
页数:13
相关论文
共 50 条
  • [21] YOLOv4 Multi-Scale Object Detection Algorithm Based on Adaptive Weighting Module
    Nie S.
    Cheng D.
    Kou Q.
    Chen J.
    Qian J.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (11): : 1712 - 1719
  • [22] Multi-Scale Detector for Accurate Vehicle Detection in Traffic Surveillance Data
    Kim, Kwang-Ju
    Kim, Pyong-Kun
    Chung, Yun-Su
    Choi, Doo-Hyun
    IEEE ACCESS, 2019, 7 : 78311 - 78319
  • [23] Wind Turbine Blade Defect Detection Based on the Genetic Algorithm-Enhanced YOLOv5 Algorithm Using Synthetic Data
    Zhang, Yuying
    Wang, Long
    Huang, Chao
    Luo, Xiong
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2025, 61 (01) : 653 - 665
  • [24] MTSDet: multi-scale traffic sign detection with attention and path aggregation
    Hongyang Wei
    Qianqian Zhang
    Yurong Qian
    Zheng Xu
    Jingjing Han
    Applied Intelligence, 2023, 53 : 238 - 250
  • [25] Contextual and Multi-Scale Feature Fusion Network for Traffic Sign Detection
    Zhang, Wei
    Wang, Qiang
    Fan, Huijie
    Tang, Yandong
    2020 10TH INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2020), 2020, : 13 - 17
  • [26] EDN-YOLO: Multi-scale traffic sign detection method in complex scenes
    Han, Yanjiang
    Wang, Fengping
    Wang, Wei
    Zhang, Xin
    Li, Xiangyu
    DIGITAL SIGNAL PROCESSING, 2024, 153
  • [27] YOLOv8-WTDD: multi-scale defect detection algorithm for wind turbines
    Yu, Xiaoyan
    Yan, Peng
    Zheng, Shaokai
    Du, Qinghan
    Wang, Daolei
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [28] MTSDet: multi-scale traffic sign detection with attention and path aggregation
    Wei, Hongyang
    Zhang, Qianqian
    Qian, Yurong
    Xu, Zheng
    Han, Jingjing
    APPLIED INTELLIGENCE, 2023, 53 (01) : 238 - 250
  • [29] YOLO-BS: a traffic sign detection algorithm based on YOLOv8
    Zhang, Hong
    Liang, Mingyin
    Wang, Yufeng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [30] Rapid detection of multi-scale cotton pests based on lightweight GBW-YOLOv5 model
    Liang, Jinyan
    Tian, Min
    Liu, Xiang
    PEST MANAGEMENT SCIENCE, 2024, 80 (06) : 2738 - 2750