Adaptive laboratory evolution and genetic engineering improved terephthalate utilization in Pseudomonas putida KT2440

被引:0
|
作者
Werner, Allison Z. [1 ,2 ]
Avina, Young-Saeng C. [1 ,2 ]
Johnsen, Josefin [3 ]
Bratti, Felicia [1 ,2 ]
Alt, Hannah M. [1 ]
Mohamed, Elsayed T. [3 ]
Clare, Rita [1 ,2 ]
Mand, Thomas D. [2 ,4 ]
Guss, Adam M. [2 ,4 ]
Feist, Adam M. [3 ,5 ]
Beckham, Gregg T. [1 ,2 ]
机构
[1] Renewable Resources & Enabling Sci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] BOTTLE Consortium, Golden, CO USA
[3] Tech Univ Denmark, Novo Nord Fdn Ctr Biosustainabil, Lyngby, Denmark
[4] Biosci Div, Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN USA
[5] Univ Calif San Diego, Dept Bioengn, San Diego, CA USA
关键词
poly(ethylene terephthalate); Plastics upcycling; Terephthalate; 1,2-DIOXYGENASE SYSTEM; ANAEROBIC DEGRADATION; PLASTIC WASTE; TOL PLASMID; METABOLISM; PATHWAY; PURIFICATION; PHTHALATE; GROWTH; TURA;
D O I
10.1016/j.ymben.2024.12.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Poly (ethylene terephthalate) (PET) is one of the most ubiquitous plastics and can be depolymerized through biological and chemo-catalytic routes to its constituent monomers, terephthalic acid (TPA) and ethylene glycol (EG). TPA and EG can be re-synthesized into PET for closed-loop recycling or microbially converted into highervalue products for open-loop recycling. Here, we expand on our previous efforts engineering and applying Pseudomonas putida KT2440 for PET conversion by employing adaptive laboratory evolution (ALE) to improve TPA catabolism. Three P. putida strains with varying degrees of metabolic engineering for EG catabolism underwent an automation-enabled ALE campaign on TPA, a TPA and EG mixture, and glucose as a control. ALE increased the growth rate on TPA and TPA-EG mixtures by 4.1- and 3.5-fold, respectively, in approximately 350 generations. Evolved isolates were collected at the midpoints and endpoints of 39 independent ALE experiments, and growth rates were increased by 0.15 and 0.20 h- 1 on TPA and a TPA-EG, respectively, in the best performing isolates. Whole-genome re-sequencing identified multiple converged mutations, including loss-of-function mutations to global regulators gacS, gacA, and turA along with large duplication and intergenic deletion events that impacted the heterologously-expressed tphABII catabolic genes. Reverse engineering of these targets confirmed causality, and a strain with all three regulators deleted and second copies of tphABII and tpaK displayed improved TPA utilization compared to the base strain. Taken together, an iterative strain engineering process involving heterologous pathway engineering, ALE, whole genome sequencing, and genome editing identified five genetic interventions that improve P. putida growth on TPA, aimed at developing enhanced whole-cell biocatalysts for PET upcycling.
引用
收藏
页码:196 / 205
页数:10
相关论文
共 50 条
  • [21] Transport and kinase activities of CbrA of Pseudomonas putida KT2440
    Larissa Wirtz
    Michelle Eder
    Kerstin Schipper
    Stefanie Rohrer
    Heinrich Jung
    Scientific Reports, 10
  • [22] Functional genomics of stress response in Pseudomonas putida KT2440
    Reva, Oleg N.
    Weinel, Christian
    Weinel, Miryam
    Boehm, Kerstin
    Stjepandic, Diana
    Hoheisel, Joerg D.
    Tuemmler, Burkhard
    JOURNAL OF BACTERIOLOGY, 2006, 188 (11) : 4079 - 4092
  • [23] Pseudomonas putida KT2440 endures temporary oxygen limitations
    Demling, Philipp
    Ankenbauer, Andreas
    Klein, Bianca
    Noack, Stephan
    Tiso, Till
    Takors, Ralf
    Blank, Lars M.
    BIOTECHNOLOGY AND BIOENGINEERING, 2021, 118 (12) : 4735 - 4750
  • [24] Global features of the Pseudomonas putida KT2440 genome sequence
    Weinel, C
    Nelson, KE
    Tümmler, B
    ENVIRONMENTAL MICROBIOLOGY, 2002, 4 (12) : 809 - 818
  • [25] Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane
    Gong, Ting
    Liu, Ruihua
    Zuo, Zhenqiang
    Che, You
    Yu, Huilei
    Song, Cunjiang
    Yang, Chao
    ACS SYNTHETIC BIOLOGY, 2016, 5 (05): : 434 - 442
  • [26] Transport and kinase activities of CbrA of Pseudomonas putida KT2440
    Wirtz, Larissa
    Eder, Michelle
    Schipper, Kerstin
    Rohrer, Stefanie
    Jung, Heinrich
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [27] Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440
    Regenhardt, D
    Heuer, H
    Heim, S
    Fernandez, DU
    Strömpl, C
    Moore, ERB
    Timmis, KN
    ENVIRONMENTAL MICROBIOLOGY, 2002, 4 (12) : 912 - 915
  • [28] Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440
    McNaught, Kevin J.
    Kuatsjah, Eugene
    Zahn, Michael
    Prates, Erica T.
    Shao, Huiling
    Bentley, Gayle J.
    Pickford, Andrew R.
    Gruber, Josephine N.
    V. Hestmark, Kelley
    Jacobson, Daniel A.
    Poirier, Brenton C.
    Ling, Chen
    San Marchi, Myrsini
    Michener, William E.
    Nicora, Carrie D.
    Sanders, Jacob N.
    Szostkiewicz, Caralyn J.
    Velickovic, Dusan
    Zhou, Mowei
    Munoz, Nathalie
    Kim, Young-Mo
    Magnuson, Jon K.
    Burnum-Johnson, Kristin E.
    Houk, K. N.
    McGeehan, John E.
    Johnson, Christopher W.
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2023, 76 : 193 - 203
  • [29] Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440
    Klein, Andreas Sebastian
    Brass, Hannah Ursula Clara
    Klebl, David Paul
    Classen, Thomas
    Loeschcke, Anita
    Drepper, Thomas
    Sievers, Sonja
    Jaeger, Karl-Erich
    Pietruszka, Joerg
    CHEMBIOCHEM, 2018, 19 (14) : 1545 - 1552
  • [30] The metabolic cost of flagellar motion in Pseudomonas putida KT2440
    Martinez-Garcia, Esteban
    Nikel, Pablo I.
    Chavarria, Max
    de Lorenzo, Victor
    ENVIRONMENTAL MICROBIOLOGY, 2014, 16 (01) : 291 - 303