Estuarine wetland tidal organic carbon activates microbial carbon pump and increases long-term soil carbon stability

被引:0
|
作者
Xie, Mengdi [1 ,2 ]
Dong, Haoyu [2 ]
Tang, Xiaolu [1 ]
Qian, Liwei [2 ,3 ]
Mei, Wenxuan [2 ]
Yan, Jianfang [2 ,4 ]
Fu, Xiaohua [2 ]
Hu, Yu [1 ]
Wang, Lei [2 ]
机构
[1] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Peoples R China
[2] Tongji Univ, Coll Environm Sci & Engn, Key Lab Yangtze River Water Environm, Minist Educ, Shanghai 200092, Peoples R China
[3] Zhejiang Dev & Planning Inst, Res Dept Energy & Ecoenvironm, Hangzhou 310030, Peoples R China
[4] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Estuarine wetland; Microbial high-throughput sequencing; Soil carbon stability; Microbial necromass; Plant lignin; BACTERIAL COMMUNITY; DECOMPOSITION; SEQUESTRATION; DEGRADATION; LITTER; SHIFTS;
D O I
10.1016/j.catena.2024.108559
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Capture of tidal organic carbon (TOC) in estuarine systems can increase soil respiration (SR) and OC breakdown, but it is also revealed tht TOC input intensity may influence the accumulation of microbial necromass, which affects soil carbon sink of estuarine wetland. To clarify how TOC input affects the microbial carbon pump and SOC stability, we conducted a 6-year field study in low and high flats of the Yangtze River estuary and examined C cycling processes. In low tide flats, where TOC input decreased from upstream to downstream, SR decreased with the increases of SOC, whereas the microbial necromass contribution to SOC decreased from 52.16% to 41.75%, which was higher than the contribution of plant-derived refractory C. Additionally, on a mudflat, which had the highest TOC capture but lacked plant C input, microbial necromass accounted for the largest percentage of SOC (61.45%). These indicated that TOC input could increase the contribution of microbial necromass C toward SOC, in comparation with plant lignin. And the promotion of TOC input to OC stability of wetland soil would become significant with the accumulation of TOC in soil after a long period. The analysis of bacterial and fungal community structure verified this speculation that the abundance of C-associated heterotrophic bacteria and fungi increased in soil with high TOC input. These findings further supplement our previous study about the short-term inhibition effect of TOC input to SOC sequestration.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Long-term grass lawn management increases soil organic carbon sequestration and microbial carbon use efficiency
    Ashraf, Muhammad Nadeem
    Mehmood, Irfa
    Farooqi, Zia Ur Rahman
    Hassan, Muhammad Itazaz
    Sanaullah, Muhammad
    Zafar, Muhammad Mubashar
    Elhindi, Khalid M.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2025, 197 (04)
  • [2] Microbial necromass carbon drives soil organic carbon accumulation during long-term vegetation succession
    Zhao, Ziwen
    Qin, Yanli
    Wu, Yang
    Chen, Wenjing
    Wang, Hao
    Chen, Jiawen
    Yang, Jinqiu
    Liu, Guobin
    Xue, Sha
    JOURNAL OF APPLIED ECOLOGY, 2025, 62 (04) : 932 - 944
  • [3] Long-term influence of conservation tillage on soil organic carbon and microbial diversity
    Yadav, Dhinu
    Wati, Leela
    Yadav, Dharam Bir
    Kumar, Ashok
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2020, 90 (07): : 1323 - 1327
  • [4] Divergence of microbial carbon use efficiency and soil organic carbon along a tidal flooding gradient in a subtropical coastal wetland
    Tan, Ji
    Huang, Jiafang
    Quan, Wenhui
    Su, Lifei
    Liu, Yi
    Cai, Yuanbin
    Li, Shihua
    Guo, Pingping
    Luo, Min
    WATER RESEARCH, 2025, 280
  • [5] Long-term rice cultivation increases contributions of plant and microbial-derived carbon to soil organic carbon in saline-sodic soils
    Du, Xuejun
    Hu, Hao
    Wang, Tianhao
    Zou, Li
    Zhou, Wenfeng
    Gao, Haixiang
    Ren, Xueqin
    Wang, Jie
    Hu, Shuwen
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 904
  • [6] Recovery of soil organic carbon storage driven by microbial communities during long-term natural restoration in wetland ecosystems
    Zhang, Shan
    Zhong, Hui
    Huang, Lingling
    Kong, Zhaoyu
    Wu, Lan
    ECOLOGICAL ENGINEERING, 2024, 199
  • [7] Effect of salinity on the decomposition of soil organic carbon in a tidal wetland
    Qu, Wendi
    Li, Juanyong
    Han, Guangxuan
    Wu, Haitao
    Song, Weimin
    Zhang, Xiaoshuai
    JOURNAL OF SOILS AND SEDIMENTS, 2019, 19 (02) : 609 - 617
  • [8] Effect of salinity on the decomposition of soil organic carbon in a tidal wetland
    Wendi Qu
    Juanyong Li
    Guangxuan Han
    Haitao Wu
    Weimin Song
    Xiaoshuai Zhang
    Journal of Soils and Sediments, 2019, 19 : 609 - 617
  • [9] Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure
    Guo, Zhen
    Han, Jichang
    Li, Juan
    Xu, Yan
    Wang, Xiaoli
    PLOS ONE, 2019, 14 (01):
  • [10] Linking soil organic carbon stock to microbial stoichiometry, carbon sequestration and microenvironment under long-term forest conversion
    Zhao, Rudong
    He, Mei
    Yue, Pengyun
    Huang, Lin
    Liu, Feng
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 301