rRNA operon improves species-level classification of bacteria and microbial community analysis compared to 16S rRNA

被引:1
作者
Won, Sohyoung [1 ,2 ]
Cho, Seoae [2 ]
Kim, Heebal [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[2] eGnome Inc, Seoul, South Korea
[3] Seoul Natl Univ, Res Inst Agr & Life Sci, Dept Agr Biotechnol, Seoul, South Korea
来源
MICROBIOLOGY SPECTRUM | 2024年
关键词
rRNA operon; 16S rRNA; bacteria; species; classification; microbial community; compositions; accuracy; identification; microbiome; ribosomal RNA; metagenomics;
D O I
10.1128/spectrum.00931-24
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Precise identification of species is fundamental in microbial genomics and is crucial for understanding the microbial communities. While the 16S rRNA gene, particularly its V3-V4 regions, has been extensively employed for microbial identification, however has limitations in achieving species-level resolution. Advancements in long-read sequencing technologies have highlighted the rRNA operon as a more accurate marker for microbial classification and analysis than the 16S rRNA gene. This study aims to compare the accuracy of species classification and microbial community analysis using the rRNA operon versus the 16S rRNA gene. We evaluated the species classification accuracy of the rRNA operon,16S rRNA gene, and 16S rRNA V3-V4 regions using a BLAST-based method and a k-mer matching-based method with public data available from NCBI. We further performed simulations to model microbial community analysis. We accessed the performance using each marker in community composition estimation and differential abundance analysis. Our findings demonstrate that the rRNA operon offers an advantage over the 16S rRNA gene and its V3-V4 regions for species-level classification within the genus. When applied to microbial community analysis, the rRNA operon enables a more accurate determination of composition. Using the rRNA operon yielded more reliable results in differential abundance analysis as well.IMPORTANCEWe quantitatively demonstrated that the rRNA operon outperformed the 16S rRNA and its V3-V4 regions in accuracy for both individual species identification and species-level microbial community analysis. Our findings can provide guidelines for selecting appropriate markers in the field of microbial research. We quantitatively demonstrated that the rRNA operon outperformed the 16S rRNA and its V3-V4 regions in accuracy for both individual species identification and species-level microbial community analysis. Our findings can provide guidelines for selecting appropriate markers in the field of microbial research.
引用
收藏
页数:14
相关论文
共 30 条
[1]   Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing [J].
Abellan-Schneyder, Isabel ;
Matchado, Monica S. ;
Reitmeier, Sandra ;
Sommer, Alina ;
Sewald, Zeno ;
Baumbach, Jan ;
List, Markus ;
Neuhaus, Klaus .
MSPHERE, 2021, 6 (01)
[2]   Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4 [J].
Blanco-Miguez, Aitor ;
Beghini, Francesco ;
Cumbo, Fabio ;
McIver, Lauren J. ;
Thompson, Kelsey N. ;
Zolfo, Moreno ;
Manghi, Paolo ;
Dubois, Leonard ;
Huang, Kun D. ;
Thomas, Andrew Maltez ;
Nickols, William A. ;
Piccinno, Gianmarco ;
Piperni, Elisa ;
Puncochar, Michal ;
Valles-Colomer, Mireia ;
Tett, Adrian ;
Giordano, Francesca ;
Davies, Richard ;
Wolf, Jonathan ;
Berry, Sarah E. ;
Spector, Tim D. ;
Franzosa, Eric A. ;
Pasolli, Edoardo ;
Asnicar, Francesco ;
Huttenhower, Curtis ;
Segata, Nicola .
NATURE BIOTECHNOLOGY, 2023, 41 (11) :1633-+
[3]   Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Huntley, James ;
Fierer, Noah ;
Owens, Sarah M. ;
Betley, Jason ;
Fraser, Louise ;
Bauer, Markus ;
Gormley, Niall ;
Gilbert, Jack A. ;
Smith, Geoff ;
Knight, Rob .
ISME JOURNAL, 2012, 6 (08) :1621-1624
[4]   The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples [J].
Caudill, Mitchell T. ;
Brayton, Kelly A. .
MICROORGANISMS, 2022, 10 (03)
[5]   Biopython']python: freely available Python']Python tools for computational molecular biology and bioinformatics [J].
Cock, Peter J. A. ;
Antao, Tiago ;
Chang, Jeffrey T. ;
Chapman, Brad A. ;
Cox, Cymon J. ;
Dalke, Andrew ;
Friedberg, Iddo ;
Hamelryck, Thomas ;
Kauff, Frank ;
Wilczynski, Bartek ;
de Hoon, Michiel J. L. .
BIOINFORMATICS, 2009, 25 (11) :1422-1423
[6]  
Cusc A., 2019, F1000RESEARCH, V7, P1755, DOI DOI 10.12688/F1000RESEARCH.16817.2
[7]   Three decades of nanopore sequencing [J].
Deamer, David ;
Akeson, Mark ;
Branton, Daniel .
NATURE BIOTECHNOLOGY, 2016, 34 (05) :518-524
[8]   Meta-analysis of gut microbiome studies identifies disease-specific and shared responses [J].
Duvallet, Claire ;
Gibbons, Sean M. ;
Gurry, Thomas ;
Irizarry, Rafael A. ;
Alm, Eric J. .
NATURE COMMUNICATIONS, 2017, 8
[9]   Real-Time DNA Sequencing from Single Polymerase Molecules [J].
Eid, John ;
Fehr, Adrian ;
Gray, Jeremy ;
Luong, Khai ;
Lyle, John ;
Otto, Geoff ;
Peluso, Paul ;
Rank, David ;
Baybayan, Primo ;
Bettman, Brad ;
Bibillo, Arkadiusz ;
Bjornson, Keith ;
Chaudhuri, Bidhan ;
Christians, Frederick ;
Cicero, Ronald ;
Clark, Sonya ;
Dalal, Ravindra ;
deWinter, Alex ;
Dixon, John ;
Foquet, Mathieu ;
Gaertner, Alfred ;
Hardenbol, Paul ;
Heiner, Cheryl ;
Hester, Kevin ;
Holden, David ;
Kearns, Gregory ;
Kong, Xiangxu ;
Kuse, Ronald ;
Lacroix, Yves ;
Lin, Steven ;
Lundquist, Paul ;
Ma, Congcong ;
Marks, Patrick ;
Maxham, Mark ;
Murphy, Devon ;
Park, Insil ;
Pham, Thang ;
Phillips, Michael ;
Roy, Joy ;
Sebra, Robert ;
Shen, Gene ;
Sorenson, Jon ;
Tomaney, Austin ;
Travers, Kevin ;
Trulson, Mark ;
Vieceli, John ;
Wegener, Jeffrey ;
Wu, Dawn ;
Yang, Alicia ;
Zaccarin, Denis .
SCIENCE, 2009, 323 (5910) :133-138
[10]   Multiple Ribosomal RNA Operons in Bacteria; Their Concerted Evolution and Potential Consequences on the Rate of Evolution of Their 16S rRNA [J].
Espejo, Romilio T. ;
Plaza, Nicolas .
FRONTIERS IN MICROBIOLOGY, 2018, 9