STEREOGRAPHIC MARKOV CHAIN MONTE CARLO

被引:0
作者
Yang, Jun [1 ]
Latuszynski, Krzysztof [2 ]
Roberts, Gareth o. [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Univ Warwick, Dept Stat, Warwick, England
基金
英国工程与自然科学研究理事会;
关键词
Random walk Metropolis; piecewise deterministic Markov processes; stereographic projection; uniform ergodicity; heavy tailed distributions; blessings of dimensionality; GEOMETRIC ERGODICITY; SCALING LIMITS; CONVERGENCE; HASTINGS; ALGORITHMS; MANIFOLDS; DIMENSION;
D O I
10.1214/24-AOS2426
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
High-dimensional distributions, especially those with heavy tails, are results in empirically observed "stickiness" and poor theoretical mixing properties-lack of geometric ergodicity. In this paper, we introduce a new class of MCMC samplers that map the original high-dimensional problem in Euclidean space onto a sphere and remedy these notorious mixing problems. In particular, we develop random-walk Metropolis type algorithms as well as versions of the Bouncy Particle Sampler that are uniformly ergodic for a large class of light and heavy-tailed distributions and also empirically exhibit rapid convergence in high dimensions. In the best scenario, the proposed samplers can enjoy the "blessings of dimensionality" that the convergence is faster in higher dimensions.
引用
收藏
页码:2692 / 2713
页数:22
相关论文
共 35 条
[1]   HYPOCOERCIVITY OF PIECEWISE DETERMINISTIC MARKOV PROCESS-MONTE CARLO [J].
Andrieu, Christophe ;
Durmus, Alain ;
Nusken, Nikolas ;
Roussel, Julien .
ANNALS OF APPLIED PROBABILITY, 2021, 31 (05) :2478-2517
[2]   Subgeometric hypocoercivity for piecewise-deterministic Markov process Monte Carlo methods [J].
Andrieu, Christophe ;
Dobson, Paul ;
Wang, Andi Q. .
ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
[3]   Event-chain Monte Carlo algorithms for hard-sphere systems [J].
Bernard, Etienne P. ;
Krauth, Werner ;
Wilson, David B. .
PHYSICAL REVIEW E, 2009, 80 (05)
[4]   HIGH-DIMENSIONAL SCALING LIMITS OF PIECEWISE DETERMINISTIC SAMPLING ALGORITHMS [J].
Bierkens, Joris ;
Kamatani, Kengo ;
Roberts, Gareth O. .
ANNALS OF APPLIED PROBABILITY, 2022, 32 (05) :3361-3407
[5]   The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method [J].
Bouchard-Cote, Alexandre ;
Vollmer, Sebastian J. ;
Doucet, Arnaud .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) :855-867
[6]   Scaling limits for the transient phase of local Metropolis-Hastings algorithms [J].
Christensen, OF ;
Roberts, GO ;
Rosenthal, JS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :253-268
[7]   MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster [J].
Cotter, S. L. ;
Roberts, G. O. ;
Stuart, A. M. ;
White, D. .
STATISTICAL SCIENCE, 2013, 28 (03) :424-446
[8]  
COXETER H. S. M., 1961, Introduction to Geometry
[9]  
DAVIS MHA, 1984, J ROY STAT SOC B MET, V46, P353
[10]   RANDOMIZED HAMILTONIAN MONTE CARLO AS SCALING LIMIT OF THE BOUNCY PARTICLE SAMPLER AND DIMENSION-FREE CONVERGENCE RATES [J].
Deligiannidis, George ;
Paulin, Daniel ;
Bouchard-Cote, Alexandre ;
Doucet, Arnaud .
ANNALS OF APPLIED PROBABILITY, 2021, 31 (06) :2612-2662