Green tea fermented by Ganoderma lucidum presented anti-obesity properties via enhanced thermogenesis in vitro and on C57BL/6J mice

被引:1
作者
Liu, Xuzhou [1 ,2 ,4 ]
Ju, Ying [2 ]
Zeng, Hongzhe [1 ]
Wen, Shuai [1 ]
Wang, Chao [1 ]
Jiang, Mingguo [3 ]
Tian, Bingchuan [4 ]
Huang, Jianan [1 ]
Liu, Zhonghua [1 ]
机构
[1] Hunan Agr Univ, Natl Res Ctr Engn & Technol Utilizat Bot Funct Ing, Key Lab Tea Sci, Coinnovat Ctr Educ Minist Utilizat Bot Funct Ingre, Changsha 410128, Hunan, Peoples R China
[2] Guangxi Acad Agr Sci, Inst Microbiol, Guangxi Crop Genet Improvement & Biotechnol Lab, Nanning 530007, Guangxi, Peoples R China
[3] Guangxi Minzu Univ, Sch Marine Sci & Biotechnol, Guangxi Key Lab Polysaccharide Mat & Modificat, Nanning 530006, Guangxi, Peoples R China
[4] Higentec Ltd Co, Changsha 410125, Hunan, Peoples R China
关键词
Fermented tea; Ganoderma lucidum; Network pharmacology; Thermogenesis; Obesity; ADIPOSE-TISSUE; ACTIVATION; MECHANISMS; PROTEIN;
D O I
10.1016/j.foodres.2025.116092
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
High-fat diets contribute to obesity and metabolic disorders. Ganoderma lucidum is renowned for its abundant bioactive compounds and diverse pharmacological effects. Green tea fermented by G. lucidum (TFG) has been shown to enhance lipid-lowering activity in vitro significantly. Using UPLC-MS/MS and GC-MS/MS, we identified 78 active lipid-lowering compounds in TFG. We explored their potential targets and pathways through network pharmacology, validated by in vivo experiments. In a 4-week trial, 70 mice were randomly assigned to 7 groups: ND (normal diet), HFD (high-fat diet), PC-HFD (HFD with orlistat), NFT1 (HFD with 200 mg/kg/day non-fermented tea), NFT2 (HFD with 400 mg/kg/day NFT), TFG1 (HFD with 200 mg/kg/day TFG), and TFG2 (HFD with 400 mg/kg/day TFG). TFG treatment significantly reduced body weight, hepatic lipid droplets, and epididymal adipocyte size in mice compared to the HFD group. TFG also increased the abundance of lipidlowering bacteria, such as Lactococcus and Lachnospirales. Liver transcriptomic and fecal metabolomic analyses revealed that TFG reduced triglyceride (TG), diglyceride (DG), monoglyceride (MG), and free fatty acid (FFA) levels and differentially regulated key genes (Dpf3, Atp5k, ND3) involved in the thermogenesis pathway. RT-PCR confirmed that TFG upregulated the mRNA expressions of AMPK, UCP1, PGC1 alpha, and PPAR gamma in dorsal fat. In conclusion, TFG enhances thermogenesis via the AMPK-PGC1 alpha pathway and increases the abundance of lipidlowering bacteria, thereby reducing fat accumulation in mice. These findings offer insights into TFG's antiobesity mechanisms, providing a scientific basis for developing new weight loss methods or products.
引用
收藏
页数:14
相关论文
共 47 条
[21]   Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family [J].
Lagkouvardos, Ilias ;
Lesker, Till R. ;
Hitch, Thomas C. A. ;
Galvez, Eric J. C. ;
Smit, Nathiana ;
Neuhaus, Klaus ;
Wang, Jun ;
Baines, John F. ;
Abt, Birte ;
Stecher, Baerbel ;
Overmann, Joerg ;
Strowig, Till ;
Clavel, Thomas .
MICROBIOME, 2019, 7 (1)
[22]   Comparative analysis of anti-obesity effects of green, fermented, and γ-aminobutyric acid teas in a high-fat diet-induced mouse model [J].
Lee, Seung-Jun ;
Cho, Kyoung Hwan ;
Kim, Jong Cheol ;
Choo, Ho Jin ;
Hwang, Jeong-Yun ;
Cho, Hyun Chin ;
Hah, Young-Sool .
APPLIED BIOLOGICAL CHEMISTRY, 2024, 67 (01)
[23]   Polysaccharide from Ziyang Selenium-Enriched Green Tea Prevents Obesity and Promotes Adipose Thermogenesis via Modulating the Gut Microbiota [J].
Li, Donglu ;
Cheng, Yukun ;
Zeng, Xiaoqian ;
Li, Yixiao ;
Xia, Zengrun ;
Yang, Xingbin ;
Ren, Daoyuan .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (36) :13363-13375
[24]   Effects of lactoferrin on intestinal flora of metabolic disorder mice [J].
Li, Li ;
Ma, Chunli ;
Hurilebagen ;
Yuan, Hong ;
Hu, Ruiping ;
Wang, Wuji ;
Weilisi .
BMC MICROBIOLOGY, 2022, 22 (01)
[25]   Obesity: Epidemiology, Pathophysiology, and Therapeutics [J].
Lin, Xihua ;
Li, Hong .
FRONTIERS IN ENDOCRINOLOGY, 2021, 12
[26]   Six types of tea reduce high-fat-diet-induced fat accumulation in mice by increasing lipid metabolism and suppressing inflammation [J].
Liu, Chen ;
Guo, Yuntong ;
Sun, Lingli ;
Lai, Xingfei ;
Li, Qiuhua ;
Zhang, Wenji ;
Xiang, Limin ;
Sun, Shili ;
Cao, Fanrong .
FOOD & FUNCTION, 2019, 10 (04) :2061-2074
[27]   Fuzhuan Brick Tea Attenuates High-Fat Diet-Induced Obesity and Associated Metabolic Disorders by Shaping Gut Microbiota [J].
Liu, Dongmin ;
Huang, Jianan ;
Luo, Yong ;
Wen, Beibei ;
Wu, Wenliang ;
Zeng, Hongliang ;
Liu Zhonghua .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (49) :13589-13604
[28]   Effect of tea catechins on gut microbiota in high fat diet-induced obese mice [J].
Liu, Jianhui ;
Ding, Huafang ;
Yan, Chi ;
He, Zouyan ;
Zhu, Hanyue ;
Ma, Ka Ying .
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2023, 103 (05) :2436-2445
[29]   Carbonic anhydrase 2 mediates anti-obesity effects of black tea as thermogenic activator [J].
Ma, Peng ;
Xiao, Jie ;
Hou, Biyu ;
He, Ping ;
Yang, Xinyu ;
Wang, Yisa ;
Wang, Zijing ;
Xu, Tianshu ;
Yang, Xiuying ;
Zhu, Xuan ;
Xiang, Shasha ;
Li, Song ;
Du, Guanhua ;
Ying, Jian ;
Qiang, Guifen .
FOOD SCIENCE AND HUMAN WELLNESS, 2024, 13 (05) :2917-2936
[30]   Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function [J].
Mottillo, Emilio P. ;
Desjardins, Eric M. ;
Crane, Justin D. ;
Smith, Brennan K. ;
Green, Alex E. ;
Ducommun, Serge ;
Henriksen, Tora I. ;
Rebalka, Irena A. ;
Razi, Aida ;
Sakamoto, Kei ;
Scheele, Camilla ;
Kemp, Bruce E. ;
Hawke, Thomas J. ;
Ortega, Joaquin ;
Granneman, James G. ;
Steinberg, Gregory R. .
CELL METABOLISM, 2016, 24 (01) :118-129