Machine learning application in building energy consumption prediction: A comprehensive review

被引:0
|
作者
Ji, Jingsong [1 ]
Yu, Hao [1 ]
Wang, Xudong [1 ]
Xu, Xiaoxiao [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Forestry Univ, Sch Civil Engn, Nanjing 210037, Jiangsu, Peoples R China
[2] Nanjing Forestry Univ, Jiangsu Carbon Sequestrat Mat & Struct Technol Bam, Nanjing 210037, Jiangsu, Peoples R China
[3] Nanjing Forestry Univ, Jiangsu Highway Intelligent Detect & Low Carbon Ma, Nanjing 210037, Jiangsu, Peoples R China
[4] Nanjing Forestry Univ, Jiangsu Prov Key Lab Intelligent Construct & Safe, Nanjing 210037, Jiangsu, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Machine learning; Energy consumption; Building; Prediction; Literature review; ARTIFICIAL NEURAL-NETWORKS; RANDOM FOREST; ELECTRICITY CONSUMPTION; LOAD PREDICTION; HYBRID MODEL; BIG DATA; PERFORMANCE; MANAGEMENT; METHODOLOGY; OPTIMIZATION;
D O I
10.1016/j.jobe.2025.112295
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Energy, the lifeblood of modern society, has garnered increased attention toward managing building energy consumption over the past decade. The proliferation of available data has opened new avenues for leveraging machine learning to predict building energy usage. Despite the extensive literature in this domain, there is a lack of systematic reviews that provide a comprehensive overview of machine learning applications in predicting building energy consumption. This research aims to: (1) review the diverse applications of machine learning in forecasting building energy consumption; (2) summarize recent advancements in machine learning for enhancing building energy efficiency; and (3) identify current research gaps while proposing future trends. Initially, 431 relevant articles published between 2012 and 2023 were examined using bibliometric analysis, leading to the identification of 16 research keywords and 9 clusters. Subsequently, content analysis was employed to assess building types, energy sources, and temporal granularity. Finally, existing research gaps were identified, and six future research directions were proposed, including (1) integration of multi-source heterogeneous data; (2) development of model transfer frameworks across different buildings; (3) increased focus within the computer science community; (4) interdisciplinary collaboration and standardization; (5) real-time monitoring and forecasting of energy consumption; and (6) data security and privacy protection. This research not only highlights prevailing research gaps but also outlines future trajectories, providing valuable insights for researchers and practitioners navigating this dynamic field.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Energy Model Machine (EMM) Instant Building Energy Prediction using Machine Learning
    Asl, Mohammad Rahmani
    Das, Subhajit
    Tsai, Barry
    Molloy, Ian
    Hauck, Anthony
    ECAADE 2017: SHARING OF COMPUTABLE KNOWLEDGE! (SHOCK!), VOL 2, 2017, : 277 - 286
  • [32] Physics-based machine learning method and the application to energy consumption prediction in tunneling construction
    Zhou, Siyang
    Liu, Shanglin
    Kang, Yilan
    Cai, Jie
    Xie, Haimei
    Zhang, Qian
    ADVANCED ENGINEERING INFORMATICS, 2022, 53
  • [33] Energy consumption prediction for office buildings: Performance evaluation and application of ensemble machine learning techniques
    Ma, Chao
    Pan, Song
    Cui, Tong
    Liu, Yiqiao
    Cui, Ying
    Wang, Haoyu
    Wan, Taocheng
    JOURNAL OF BUILDING ENGINEERING, 2025, 102
  • [34] Energy consumption model and energy efficiency of machine tools: a comprehensive literature review
    Zhou, Lirong
    Li, Jianfeng
    Li, Fangyi
    Meng, Qiang
    Li, Jing
    Xu, Xingshuo
    JOURNAL OF CLEANER PRODUCTION, 2016, 112 : 3721 - 3734
  • [35] Machine learning for energy consumption prediction and scheduling in smart buildings
    Safae Bourhnane
    Mohamed Riduan Abid
    Rachid Lghoul
    Khalid Zine-Dine
    Najib Elkamoun
    Driss Benhaddou
    SN Applied Sciences, 2020, 2
  • [36] Machine learning for energy consumption prediction and scheduling in smart buildings
    Bourhnane, Safae
    Abid, Mohamed Riduan
    Lghoul, Rachid
    Zine-Dine, Khalid
    Elkamoun, Najib
    Benhaddou, Driss
    SN APPLIED SCIENCES, 2020, 2 (02):
  • [37] Prediction of electrical energy consumption based on machine learning technique
    Banik, Rita
    Das, Priyanath
    Ray, Srimanta
    Biswas, Ankur
    ELECTRICAL ENGINEERING, 2021, 103 (02) : 909 - 920
  • [38] Prediction of electrical energy consumption based on machine learning technique
    Rita Banik
    Priyanath Das
    Srimanta Ray
    Ankur Biswas
    Electrical Engineering, 2021, 103 : 909 - 920
  • [39] Tuning machine learning models for prediction of building energy loads
    Seyedzadeh, Saleh
    Rahimian, Farzad Pour
    Rastogi, Parag
    Glesk, Ivan
    SUSTAINABLE CITIES AND SOCIETY, 2019, 47
  • [40] A Comprehensive Review of Digital Twin Technology in Building Energy Consumption Forecasting
    Boukaf, Maissa
    Fadli, Fodil
    Meskin, Nader
    IEEE ACCESS, 2024, 12 : 187778 - 187799