Machine learning application in building energy consumption prediction: A comprehensive review

被引:0
作者
Ji, Jingsong [1 ]
Yu, Hao [1 ]
Wang, Xudong [1 ]
Xu, Xiaoxiao [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Forestry Univ, Sch Civil Engn, Nanjing 210037, Jiangsu, Peoples R China
[2] Nanjing Forestry Univ, Jiangsu Carbon Sequestrat Mat & Struct Technol Bam, Nanjing 210037, Jiangsu, Peoples R China
[3] Nanjing Forestry Univ, Jiangsu Highway Intelligent Detect & Low Carbon Ma, Nanjing 210037, Jiangsu, Peoples R China
[4] Nanjing Forestry Univ, Jiangsu Prov Key Lab Intelligent Construct & Safe, Nanjing 210037, Jiangsu, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2025年 / 104卷
基金
中国国家自然科学基金;
关键词
Machine learning; Energy consumption; Building; Prediction; Literature review; ARTIFICIAL NEURAL-NETWORKS; RANDOM FOREST; ELECTRICITY CONSUMPTION; LOAD PREDICTION; HYBRID MODEL; BIG DATA; PERFORMANCE; MANAGEMENT; METHODOLOGY; OPTIMIZATION;
D O I
10.1016/j.jobe.2025.112295
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Energy, the lifeblood of modern society, has garnered increased attention toward managing building energy consumption over the past decade. The proliferation of available data has opened new avenues for leveraging machine learning to predict building energy usage. Despite the extensive literature in this domain, there is a lack of systematic reviews that provide a comprehensive overview of machine learning applications in predicting building energy consumption. This research aims to: (1) review the diverse applications of machine learning in forecasting building energy consumption; (2) summarize recent advancements in machine learning for enhancing building energy efficiency; and (3) identify current research gaps while proposing future trends. Initially, 431 relevant articles published between 2012 and 2023 were examined using bibliometric analysis, leading to the identification of 16 research keywords and 9 clusters. Subsequently, content analysis was employed to assess building types, energy sources, and temporal granularity. Finally, existing research gaps were identified, and six future research directions were proposed, including (1) integration of multi-source heterogeneous data; (2) development of model transfer frameworks across different buildings; (3) increased focus within the computer science community; (4) interdisciplinary collaboration and standardization; (5) real-time monitoring and forecasting of energy consumption; and (6) data security and privacy protection. This research not only highlights prevailing research gaps but also outlines future trajectories, providing valuable insights for researchers and practitioners navigating this dynamic field.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Building Energy Information: Demand and Consumption Prediction with Machine Learning Models for Sustainable and Smart Cities
    Ardabili, Sina
    Mosavi, Amir
    Varkonyi-Koczy, Annamaria R.
    ENGINEERING FOR SUSTAINABLE FUTURE, 2020, 101 : 191 - 201
  • [32] BIM-Based Machine Learning Application for Parametric Assessment of Building Energy Performance
    Tsikas, Panagiotis
    Chassiakos, Athanasios
    Papadimitropoulos, Vasileios
    Papamanolis, Antonios
    ENERGIES, 2025, 18 (01)
  • [33] Machine Learning Applications in Building Energy Systems: Review and Prospects
    Li, Daoyang
    Qi, Zhenzhen
    Zhou, Yiming
    Elchalakani, Mohamed
    BUILDINGS, 2025, 15 (04)
  • [34] Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings
    Amasyali, Kadir
    El-Gohary, Nora
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 142
  • [35] Comparative analysis of machine learning models for prediction and forecasting of electric water boilers energy consumption
    Kachalla, Ibrahim Ali
    Ghiaus, Christian
    Baseer, Majid
    APPLIED THERMAL ENGINEERING, 2025, 267
  • [36] Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods
    Nosratabadi, Saeed
    Mosavi, Amirhosein
    Puhong Duan
    Ghamisi, Pedram
    Filip, Ferdinand
    Band, Shahab S.
    Reuter, Uwe
    Gama, Joao
    Gandomi, Amir H.
    MATHEMATICS, 2020, 8 (10) : 1 - 25
  • [37] Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction
    Adegoke, Muideen
    Hafiz, Alaka
    Ajayi, Saheed
    Olu-Ajayi, Razak
    ENERGIES, 2022, 15 (24)
  • [38] Machine Learning and Deep Learning Methods in Mining Operations: a Data-Driven SAG Mill Energy Consumption Prediction Application
    Avalos, Sebastian
    Kracht, Willy
    Ortiz, Julian M.
    MINING METALLURGY & EXPLORATION, 2020, 37 (04) : 1197 - 1212
  • [39] Parametric analysis and prediction of energy consumption of electric vehicles using machine learning
    Nabi, Md. Nurun
    Ray, Biplob
    Rashid, Fazlur
    Al Hussam, Wisam
    Muyeen, S. M.
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [40] Influencing Factors Evaluation of Machine Learning-Based Energy Consumption Prediction
    Khan, Prince Waqas
    Kim, Yongjun
    Byun, Yung-Cheol
    Lee, Sang-Joon
    ENERGIES, 2021, 14 (21)