Deep learning-enabled exploration of global spectral features for photosynthetic capacity estimation

被引:0
作者
Deng, Xianzhi [1 ]
Hu, Xiaolong [1 ]
Shi, Liangsheng [1 ]
Su, Chenye [1 ]
Li, Jinmin [1 ]
Du, Shuai [1 ]
Li, Shenji [2 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources Engn & Management, Wuhan, Hubei, Peoples R China
[2] Urban Operat Management Ctr Hengsha Township, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral data; spectral sensitive band; vegetation index; photosynthetic capacity; deep learning; power compression; LEAF OPTICAL-PROPERTIES; REFLECTANCE INDEX PRI; CHLOROPHYLL CONTENT; VEGETATION INDEXES; LEAVES; CANOPY; MODEL; LIGHT; LIMITATIONS; REGRESSION;
D O I
10.3389/fpls.2024.1499875
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Spectral analysis is a widely used method for monitoring photosynthetic capacity. However, vegetation indices-based linear regression exhibits insufficient utilization of spectral information, while full spectra-based traditional machine learning has limited representational capacity (partial least squares regression) or uninterpretable (convolution). In this study, we proposed a deep learning model with enhanced interpretability based on attention and vegetation indices calculation for global spectral feature mining to accurately estimate photosynthetic capacity. We explored the ability of the model to uncover the optimal vegetation indices form and illustrated its advantage over traditional methods. Furthermore, we verified that power compression was an effective method for spectral processing. Our results demonstrated that the new model outperformed traditional models, with an increase in the coefficient of determination (R2) of 0.01-0.43 and a decrease in root mean square error (RMSE) of 1.58-12.48 mu mol m-2 s-1. The best performance of our model in R2 was 0.86 and 0.81 for maximum carboxylation rate (Vcmax ) and maximum electron transport rate (Jmax ), respectively. The photosynthesis-sensitive spectral bands identified by our model were predominantly in the visible range. The most sensitive vegetation indices form discovered by our model was R e f l e c t a n c e n e a r - i n f r a r e d + R e f l e c t a n c e g r e e n / b l u e R e f l e c t a n c e n e a r - i n f r a r e d x R e f l e c t a n c e r e d . Our model provides a new framework for interpreting spectral information and accurately estimating photosynthetic capacity.
引用
收藏
页数:23
相关论文
共 118 条
[21]   Evaluation of the MERIS terrestrial chlorophyll index (MTCI) [J].
Dash, J. ;
Curran, P. J. .
ADVANCES IN SPACE RESEARCH, 2007, 39 (01) :100-104
[22]   Deep learning for physical processes: incorporating prior scientific knowledge [J].
de Bezenac, Emmanuel ;
Pajot, Arthur ;
Gallinari, Patrick .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (12)
[23]   Estimation of photosynthetic parameters from hyperspectral images using optimal deep learning architecture [J].
Deng, Xianzhi ;
Zhang, Zhixin ;
Hu, Xiaolong ;
Li, Jinmin ;
Li, Shenji ;
Su, Chenye ;
Du, Shuai ;
Shi, Liangsheng .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 216
[24]   Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations [J].
Drake, J. E. ;
Power, S. A. ;
Duursma, R. A. ;
Medlyn, B. E. ;
Aspinwall, M. J. ;
Choat, B. ;
Creek, D. ;
Eamus, D. ;
Maier, C. ;
Pfautsch, S. ;
Smith, R. A. ;
Tjoelker, M. G. ;
Tissue, D. T. .
AGRICULTURAL AND FOREST METEOROLOGY, 2017, 247 :454-466
[25]   Plantecophys - An R Package for Analysing and Modelling Leaf Gas Exchange Data [J].
Duursma, Remko A. .
PLOS ONE, 2015, 10 (11)
[26]   SOME FACTORS INFLUENCING THE LONG-WAVE LIMIT OF PHOTOSYNTHESIS [J].
EMERSON, R ;
CHALMERS, R ;
CEDERSTRAND, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1957, 43 (01) :133-143
[27]   A BIOCHEMICAL-MODEL OF PHOTOSYNTHETIC CO2 ASSIMILATION IN LEAVES OF C-3 SPECIES [J].
FARQUHAR, GD ;
CAEMMERER, SV ;
BERRY, JA .
PLANTA, 1980, 149 (01) :78-90
[28]   Global Carbon Budget 2021 [J].
Friedlingstein, Pierre ;
Jones, Matthew W. ;
O'Sullivan, Michael ;
Andrew, Robbie M. ;
Bakker, Dorothee C. E. ;
Hauck, Judith ;
Le Quere, Corinne ;
Peters, Glen P. ;
Peters, Wouter ;
Pongratz, Julia ;
Sitch, Stephen ;
Canadell, Josep G. ;
Ciais, Philippe ;
Jackson, Rob B. ;
Alin, Simone R. ;
Anthoni, Peter ;
Bates, Nicholas R. ;
Becker, Meike ;
Bellouin, Nicolas ;
Bopp, Laurent ;
Chau, Thi Tuyet Trang ;
Chevallier, Frederic ;
Chini, Louise P. ;
Cronin, Margot ;
Currie, Kim I. ;
Decharme, Bertrand ;
Djeutchouang, Laique M. ;
Dou, Xinyu ;
Evans, Wiley ;
Feely, Richard A. ;
Feng, Liang ;
Gasser, Thomas ;
Gilfillan, Dennis ;
Gkritzalis, Thanos ;
Grassi, Giacomo ;
Gregor, Luke ;
Gruber, Nicolas ;
Gurses, Ozgur ;
Harris, Ian ;
Houghton, Richard A. ;
Hurtt, George C. ;
Iida, Yosuke ;
Ilyina, Tatiana ;
Luijkx, Ingrid T. ;
Jain, Atul ;
Jones, Steve D. ;
Kato, Etsushi ;
Kennedy, Daniel ;
Klein Goldewijk, Kees ;
Knauer, Jurgen .
EARTH SYSTEM SCIENCE DATA, 2022, 14 (04) :1917-2005
[29]   Retrieval performance of mangrove tree heights using multiple machine learning regression models and UAV-LiDAR point clouds [J].
Fu, Bolin ;
Jiang, Linhang ;
Yao, Hang ;
Wei, Yingying ;
Jia, Mingming ;
Sun, Weiwei ;
Yang, Yanli ;
Deng, Tengfang .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
[30]   Synergistic retrieval of mangrove vital functional traits using field hyperspectral and satellite data [J].
Fu, Bolin ;
Wu, Yan ;
Zhang, Shurong ;
Sun, Weiwei ;
Jia, Mingming ;
Deng, Tengfang ;
He, Hongchang ;
Yuan, Bingyan ;
Fan, Donglin ;
Wang, Yeqiao .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 131