Synergistic effects of ionic liquid integrated superhydrophobic composite coatings on anti-icing properties

被引:0
|
作者
Patil, Aravind H. [1 ,2 ]
Trinh, Ngoc Le [2 ]
Do, Hackwon [3 ]
Kang, Youngho [2 ]
Lee, Joohan [1 ]
Chung, Changhyun [1 ]
Lee, Han-Bo-Ram [2 ]
机构
[1] Korea Polar Res Inst, Ctr Technol Dev, Incheon 21990, South Korea
[2] Incheon Natl Univ, Dept Mat Sci & Engn, Incheon 22012, South Korea
[3] Korea Polar Res Inst, Div Life Sci, Incheon 21990, South Korea
关键词
Ionic liquid (IL); Density Functional Theory (DFT); Anti-icing; Quasi-liquid layer; Freezing Delay Time (FDT); Superhydrophobic Surface (SHS); INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ICE PROTECTION; SURFACES; FABRICATION; SIMULATION; SILICA;
D O I
10.1016/j.apsusc.2025.162749
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ice accretion on surfaces presents significant challenges across various applications. To address this, hydrophobic polymer/ionic liquid (IL) composite coatings have emerged as effective solutions for enhancing anti-icing properties. In this study, we explored the potential of a poly(dimethylsiloxane) (PDMS)/IL/SiO2 nanoparticle (NP) composite, employing two synergistic strategies: superhydrophobicity to reduce the ice/coating contact area and IL-induced quasi-liquid layer (QLL) formation to improve anti-icing performance. Density functional theory (DFT) calculations and structural analyses were performed to confirm IL dispersion within PDMS matrix, highlighting ion-dipole interactions between PDMS and 1-ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide (EMIMTFSI). IL-integrated PDMS/SiO2 composite exhibited a water contact angle (WCA) and water sliding angle (WSA) of 166.6 f 0.5 degrees and 4 f 1 degrees, respectively. The PDMS/IL/SiO2 NPs composite coating exhibited an ice adhesion strength (IAS) of 19 f 1 kPa, which is four times lower than that of the PDMS/SiO2 NPs composite. Additionally, the IL-integrated superhydrophobic composite exhibited the FDT of 325 f 6 s, representing a 14-fold increase compared to that of a bare Al substrate. Overall, the IL-integrated coatings exhibited superior superhydrophobicity and QLL formation, leading to significantly improved FDT and a notable reduction in IAS. These sprayable IL-based composites show great promise as practical anti-icing coatings for extreme cold environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multifunctional superhydrophobic composite film with icing monitoring and anti-icing/deicing performance
    Yang, Chao
    Ji, Haozhong
    Song, Longhai
    Su, Haoxi
    Qi, Zhengpan
    Wang, Yao
    Cheng, E.
    Zhao, Libin
    Hu, Ning
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 258
  • [32] Superhydrophobic and photothermal SiC/TiN durable composite coatings for passive anti-icing/active de-icing and de-frosting
    He, Hua
    Huang, Wei
    Guo, Zhiguang
    MATERIALS TODAY PHYSICS, 2023, 30
  • [33] Enhanced anti-icing and drag reduction of multilayer composite structure superhydrophobic surface
    Jiang, Xinghe
    Zhou, Changjiang
    Su, Jie
    Tang, Shan
    Li, Ning
    APPLIED SURFACE SCIENCE, 2025, 686
  • [34] A study on superhydrophobic coating in anti-icing of glass/porcelain insulator
    Li, Xiying
    Yang, Beibei
    Zhang, Yiqun
    Gu, Guotuan
    Li, Mengmeng
    Mao, Liqun
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2014, 69 (02) : 441 - 447
  • [35] Preparation and anti-icing properties of a superhydrophobic silicone coating on asphalt mixture
    Peng, Chao
    Zhang, Hao
    You, Zhanping
    Xu, Fang
    Jiang, Guosheng
    Lv, Songtao
    Zhang, Ran
    Yang, Hao
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 189 : 227 - 235
  • [36] Study on preparation and performance of anti-icing Superhydrophobic coating applied to composite insulators
    Kong, Weike
    Yang, Kaijun
    Chen, Yaofeng
    Shao, Wenpeng
    Jia, Chenyu
    Zhu, Jinpeng
    He, Jilin
    PROGRESS IN ORGANIC COATINGS, 2025, 198
  • [37] A Review on Superhydrophobic Surface with Anti-Icing Properties in Overhead Transmission Lines
    Li, Bo
    Bai, Jie
    He, Jinhang
    Ding, Chao
    Dai, Xu
    Ci, Wenjun
    Zhu, Tao
    Liao, Ruijin
    Yuan, Yuan
    COATINGS, 2023, 13 (02)
  • [38] Femtosecond laser fabrication of superhydrophobic metallic surfaces with anti-icing properties
    Volpe, Annalisa
    Di Venere, Leonardo
    Gaudiuso, Caterina
    Licciulli, Francesco
    Giordano, Francesco
    Ancona, Antonio
    LASER-BASED MICRO- AND NANOPROCESSING XV, 2021, 11674
  • [39] Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems
    Antonini, C.
    Innocenti, M.
    Horn, T.
    Marengo, M.
    Amirfazli, A.
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2011, 67 (1-2) : 58 - 67
  • [40] An anti-icing coating with superhydrophobic and photothermal properties for aircraft icing protection system
    Yang, Lechen
    Li, Yong
    Huan, Dajun
    Zhu, Chunling
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 709