Synergistic effects of ionic liquid integrated superhydrophobic composite coatings on anti-icing properties

被引:0
|
作者
Patil, Aravind H. [1 ,2 ]
Trinh, Ngoc Le [2 ]
Do, Hackwon [3 ]
Kang, Youngho [2 ]
Lee, Joohan [1 ]
Chung, Changhyun [1 ]
Lee, Han-Bo-Ram [2 ]
机构
[1] Korea Polar Res Inst, Ctr Technol Dev, Incheon 21990, South Korea
[2] Incheon Natl Univ, Dept Mat Sci & Engn, Incheon 22012, South Korea
[3] Korea Polar Res Inst, Div Life Sci, Incheon 21990, South Korea
关键词
Ionic liquid (IL); Density Functional Theory (DFT); Anti-icing; Quasi-liquid layer; Freezing Delay Time (FDT); Superhydrophobic Surface (SHS); INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ICE PROTECTION; SURFACES; FABRICATION; SIMULATION; SILICA;
D O I
10.1016/j.apsusc.2025.162749
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ice accretion on surfaces presents significant challenges across various applications. To address this, hydrophobic polymer/ionic liquid (IL) composite coatings have emerged as effective solutions for enhancing anti-icing properties. In this study, we explored the potential of a poly(dimethylsiloxane) (PDMS)/IL/SiO2 nanoparticle (NP) composite, employing two synergistic strategies: superhydrophobicity to reduce the ice/coating contact area and IL-induced quasi-liquid layer (QLL) formation to improve anti-icing performance. Density functional theory (DFT) calculations and structural analyses were performed to confirm IL dispersion within PDMS matrix, highlighting ion-dipole interactions between PDMS and 1-ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide (EMIMTFSI). IL-integrated PDMS/SiO2 composite exhibited a water contact angle (WCA) and water sliding angle (WSA) of 166.6 f 0.5 degrees and 4 f 1 degrees, respectively. The PDMS/IL/SiO2 NPs composite coating exhibited an ice adhesion strength (IAS) of 19 f 1 kPa, which is four times lower than that of the PDMS/SiO2 NPs composite. Additionally, the IL-integrated superhydrophobic composite exhibited the FDT of 325 f 6 s, representing a 14-fold increase compared to that of a bare Al substrate. Overall, the IL-integrated coatings exhibited superior superhydrophobicity and QLL formation, leading to significantly improved FDT and a notable reduction in IAS. These sprayable IL-based composites show great promise as practical anti-icing coatings for extreme cold environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Superhydrophobic and Anti-Icing Coatings Made of Hierarchically Nanofibrillated Polymer Colloids
    Williams, Austin H.
    Roh, Sangchul
    Kotb, Yosra
    Velev, Orlin D.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (23)
  • [12] Superhydrophobic SiC/CNTs Coatings with Photothermal Deicing and Passive Anti-Icing Properties
    Jiang, Guo
    Chen, Liang
    Zhang, Shuidong
    Huang, Hanxiong
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (42) : 36505 - 36511
  • [13] Anti-icing properties of superhydrophobic ZnO/PDMS composite coating
    Yang, Chao
    Wang, Fajun
    Li, Wen
    Ou, Junfei
    Li, Changquan
    Amirfazli, Alidad
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (01): : 1 - 10
  • [14] Anti-Icing Nanoparticle/Polymer Composite Coatings
    Tang, Xinde
    Li, Jun
    Li, Ling
    Chen, Hong
    Kong, Xiangli
    PROGRESS IN POLYMER PROCESSING, 2012, 501 : 22 - +
  • [15] A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite
    Wang, Peng
    Yao, Tao
    Li, Ziqiang
    Wei, Weidong
    Xie, Qing
    Duan, Wei
    Han, Huilong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 198
  • [16] Superhydrophobic and anti-icing properties of sol–gel prepared alumina coatings
    M. Ruan
    J. W. Wang
    Q. L. Liu
    F. M. Ma
    Z. L. Yu
    W. Feng
    Y. Chen
    Russian Journal of Non-Ferrous Metals, 2016, 57 : 638 - 645
  • [17] Anti-icing and anti-frost properties of structured superhydrophobic coatings based on aluminum honeycombs
    Chen, Xiaodong
    Hu, Lina
    Du, Yizhi
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 291
  • [18] Preparation, characterisation, and anti-icing properties of superhydrophobic coatings on asphalt mixture
    Zhao, Yi
    Wen, Kaiqi
    Wang, Jia
    Yang, Zhen
    Qin, Min
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2023, 24 (02)
  • [19] Preparation and Anti-Icing Properties of Zirconia Superhydrophobic Coating
    Zhou, Jiahui
    Zheng, Haikun
    Sheng, Wei
    Hao, Xiaoru
    Zhang, Xinmin
    MOLECULES, 2024, 29 (08):
  • [20] Synergistic Effects of the Superhydrophilic and Superhydrophobic Components on the Antifreezing Performances of Latex Particles and Anti-Icing Properties of Latex Films
    Zhang, Jie
    Zhao, Hanying
    MACROMOLECULAR RAPID COMMUNICATIONS, 2024, 45 (19)