The first eigenvalue of one-dimensional elliptic operators with killing

被引:0
作者
Dai, Kang [1 ]
Sun, Xiaobin [2 ]
Wang, Jian [3 ,4 ,5 ]
Xie, Yingchao [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
[2] Jiangsu Normal Univ, Res Inst Math Sci, Xuzhou, Peoples R China
[3] Fujian Normal Univ, Sch Math & Stat, Fuzhou, Peoples R China
[4] Fujian Normal Univ, Key Lab Analyt Math & Applicat, Minist Educ, Fuzhou, Peoples R China
[5] Fujian Normal Univ, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
approximation procedure; elliptic operator with killing; the first eigenvalue; & planckh; -transform; SPECTRAL GAP;
D O I
10.1002/mana.202400331
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the first eigenvalue for one-dimensional elliptic operators with killing. Two-sided approximation procedures and basic estimates of the first eigenvalue are given in both the half line and the whole line. The proofs are based on the h-transform, Chen's dual variational formulas, and the split technique. In particular, a few examples are presented to illustrate the power of our results.
引用
收藏
页码:282 / 311
页数:30
相关论文
共 40 条
[21]   A note on one-dimensional Poincare inequalities by Stein-type integration [J].
Germain, Gilles ;
Swan, Yvik .
BERNOULLI, 2023, 29 (02) :1714-1740
[22]   COMPLEX MODAL EXTRACTION FOR ESTIMATING WAVE PARAMETERS IN ONE-DIMENSIONAL MEDIA [J].
Feeny, B. F. .
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, DETC 2010, VOL 5, 2010, :997-1006
[23]   Spectral gap lower bound for the one-dimensional fractional Schrodinger operator in the interval [J].
Kaleta, Kamil .
STUDIA MATHEMATICA, 2012, 209 (03) :267-287
[24]   Fractional Integrals Associated with the One-Dimensional Dunkl Operator in Generalized Lizorkin Space [J].
Bouzeffour, Fethi .
SYMMETRY-BASEL, 2023, 15 (09)
[25]   DIFFUSIVITY IN ONE-DIMENSIONAL GENERALIZED MOTT VARIABLE-RANGE HOPPING MODELS [J].
Caputo, P. ;
Faggionato, A. .
ANNALS OF APPLIED PROBABILITY, 2009, 19 (04) :1459-1494
[26]   A NOTE ON SPECTRAL GAP AND WEIGHTED POINCARE INEQUALITIES FOR SOME ONE-DIMENSIONAL DIFFUSIONS [J].
Bonnefont, Michel ;
Joulin, Alderic ;
Ma, Yutao .
ESAIM-PROBABILITY AND STATISTICS, 2016, 20 :18-29
[27]   One-Dimensional Fokker-Planck Equations and Functional Inequalities for Heavy Tailed Densities [J].
Furioli, Giulia ;
Pulvirenti, Ada ;
Terraneo, Elide ;
Toscani, Giuseppe .
MILAN JOURNAL OF MATHEMATICS, 2022, 90 (01) :177-208
[28]   Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes [J].
Jara, Milton ;
Landim, Claudio ;
Sethuraman, Sunder .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (03) :611-637
[29]   Band Edge Limit of the Scattering Matrix for Quasi-One-Dimensional Discrete Schrodinger Operators [J].
Ballesteros, Miguel ;
Franco, Gerardo ;
Garro, Guillermo ;
Schulz-Baldes, Hermann .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (02)
[30]   One-Dimensional Dictionary Learning With Variational Sparse Representation for Single-Channel Seismic Denoising [J].
Cui, Yang ;
Bai, Min ;
Zhou, Zixiang ;
Chen, Yangkang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-13