PANICLE SEGMENTATION ON UAV CAPTURED MULTISPECTRAL PADDY CROP IMAGERY

被引:0
|
作者
Tejasri, N. [1 ]
Praneela, S. [2 ]
Rajalakshmi, P. [1 ,2 ]
Balram, M. [3 ]
Desai, Uday B. [1 ,2 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Artificial Intelligence, Kandi, Telangana, India
[2] Indian Inst Technol Hyderabad, Dept Elect Engn, Kandi, Telangana, India
[3] PJTSAU, Inst Biotechnol, Hyderabad, India
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
关键词
Panicle Segmentation; Paddy crop; Image segmentation; UAV based Remote Sensing; Semi-automatic annotation;
D O I
10.1109/IGARSS53475.2024.10641770
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Automation of crop yield estimation is crucial to cultivate efficient breeding techniques to fulfill the increasing population demands and adapt to climate change. The panicle count of paddy is directly associated with the yield of crop. In this work, we implement computer vision-based image segmentation methods for segmenting panicles by utilizing Unmanned Aerial Vehicle (UAV) captured multispectral imagery. The developed algorithms in this study could be used as a reference for panicle counting models during the vegetative and heading stages of the paddy crop. In addition, we introduce a semi-automatic image annotation method for effortless creation of labeled paddy crop datasets. With this method, our developed tool collaborates with an annotation tool to offer preliminary image annotations, which users can subsequently refine the annotations.
引用
收藏
页码:2823 / 2827
页数:5
相关论文
共 50 条
  • [1] Paddy Rice Imagery Dataset for Panicle Segmentation
    Wang, Hao
    Lyu, Suxing
    Ren, Yaxin
    AGRONOMY-BASEL, 2021, 11 (08):
  • [2] Canopy Extraction in a Banana Crop From UAV Captured Multispectral Images
    Espinosa Valdez, Alexander
    Polo Castaneda, Miguel Angel
    Gomez-Rojas, Jorge
    Linero Ramos, Rafael
    PROCEEDINGS OF THE 2022 IEEE 40TH CENTRAL AMERICA AND PANAMA CONVENTION (CONCAPAN), 2022,
  • [3] AUTOMATIC CROP ROWS SEGMENTATION FOR MULTISPECTRAL AERIAL IMAGERY
    Bojeri, Alex
    Melgani, Farid
    Giannotta, Giovanni
    Ristorto, Gianluca
    Guglieri, Giorgio
    Marcato Junior, Jose
    2022 IEEE MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2022, : 78 - 81
  • [4] Monitoring of crop fields using multispectral and thermal imagery from UAV
    Raeva, Paulina Lyubenova
    Sedina, Jaroslav
    Dlesk, Adam
    EUROPEAN JOURNAL OF REMOTE SENSING, 2019, 52 (sup1) : 192 - 201
  • [5] Crop marks detection through optical and multispectral imagery acquired by UAV
    Casella, Vittorio
    Franzini, Marica
    Gorrini, Maria Elena
    2018 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR ARCHAEOLOGY AND CULTURAL HERITAGE (METROARCHAEO 2018), 2018, : 173 - 177
  • [6] Deep Networks Based Approach for Automatic Counting Panicles on UAV Captured Paddy RGB Imagery
    Tejasri, N.
    Betson, Sam Mathew
    Rajalakshmi, P.
    Balram, M.
    Desai, Uday B.
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT III, 2025, 2135 : 301 - 311
  • [7] Calibration of Satellite Imagery with Multispectral UAV Imagery
    Jain, Kamal
    Pandey, Akshay
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (03) : 479 - 490
  • [8] Calibration of Satellite Imagery with Multispectral UAV Imagery
    Kamal Jain
    Akshay Pandey
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 479 - 490
  • [9] Evaluation of Rapeseed Winter Crop Damage Using UAV-Based Multispectral Imagery
    Jelowicki, Lukasz
    Sosnowicz, Konrad
    Ostrowski, Wojciech
    Osinska-Skotak, Katarzyna
    Bakula, Krzysztof
    REMOTE SENSING, 2020, 12 (16)
  • [10] Evaluation of Maize Crop Damage Using UAV-Based RGB and Multispectral Imagery
    Dobosz, Barbara
    Gozdowski, Dariusz
    Koronczok, Jerzy
    Zukovskis, Jan
    Wojcik-Gront, Elzbieta
    AGRICULTURE-BASEL, 2023, 13 (08):