On the polynomiality conjecture of cluster realization of quantum groups

被引:0
作者
Ip, Ivan Chi-Ho [1 ]
Ye, Jeff York [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore, Singapore
关键词
Quantum groups; Positive representations; Cluster algebra; Sign coherence; POSITIVE REPRESENTATIONS;
D O I
10.1016/j.jalgebra.2024.08.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a sufficient and necessary condition for a regular element of a quantum cluster algebra O q ( X ) to be universally polynomial. This resolves several conjectures by the first author on the polynomiality of the cluster realization of quantum group generators in different families of positive representations.
引用
收藏
页码:119 / 149
页数:31
相关论文
共 35 条
  • [1] Quantum cluster algebras
    Berenstein, A
    Zelevinsky, A
    [J]. ADVANCES IN MATHEMATICS, 2005, 195 (02) : 405 - 455
  • [2] Cluster algebras III: Upper bounds and double Bruhat cells
    Berenstein, A
    Fomin, S
    Zelevinsky, A
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) : 1 - 52
  • [3] Berenstein A., 1996, arXiv
  • [4] Ip ICH, 2020, Arxiv, DOI arXiv:2008.08589
  • [5] Strong positivity for quantum theta bases of quantum cluster algebras
    Davison, Ben
    Mandel, Travis
    [J]. INVENTIONES MATHEMATICAE, 2021, 226 (03) : 725 - 843
  • [6] Drinfeld V., 1990, Hopf Algebras and the Quantum Yang-Baxter Equation, P264
  • [7] Faddeev L, 2000, MATH PHYS S, V21, P149
  • [8] DISCRETE HEISENBERG-WEYL GROUP AND MODULAR GROUP
    FADDEEV, LD
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1995, 34 (03) : 249 - 254
  • [9] Fock VV, 2006, PROG MATH, V253, P27
  • [10] CLUSTER ENSEMBLES, QUANTIZATION AND THE DILOGARITHM
    Fock, Vladimir V.
    Goncharov, Alexander B.
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2009, 42 (06): : 865 - 930