Dissecting stellar populations with manifold learning: I. Validation of the method on a synthetic Milky Way-like galaxy

被引:0
作者
Neitzel, A. W. [1 ,2 ]
Campante, T. L. [1 ,2 ]
Bossini, D. [3 ,4 ]
Miglio, A. [5 ,6 ]
机构
[1] Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas Porto, P-4150762 Porto, Portugal
[2] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
[3] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Vicolo Osservatorio 3, I-35122 Padua, Italy
[4] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy
[5] Univ Bologna, Dept Phys & Astron, Via P Gobetti 93-2, I-40129 Bologna, Italy
[6] INAF Osservatorio Astrofis & Sci Spazio, Via P Gobetti 93-3, I-40129 Bologna, Italy
基金
欧洲研究理事会;
关键词
asteroseismology; methods: data analysis; stars: oscillations; Galaxy: evolution; Galaxy: stellar content; Galaxy: structure; FIRE COSMOLOGICAL SIMULATIONS; GALACTIC ARCHAEOLOGY; CHEMICAL EVOLUTION; RED GIANTS; ASTEROSEISMOLOGY; STARS; MISSION; DWARF; CHRONOLOGY; SATELLITE;
D O I
10.1051/0004-6361/202451718
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Different stellar populations may be identified through differences in chemical, kinematic, and chronological properties, suggesting the interplay of various physical mechanisms that led to their origin and subsequent evolution. As such, the identification of stellar populations is key for gaining an insight into the evolutionary history of the Milky Way. This task is complicated by the fact that stellar populations share a significant overlap in their chrono-chemo-kinematic properties, hindering efforts to identify and define stellar populations. Aims. Our goal is to offer a novel and effective methodology that can provide a deeper insight into the nonlinear and nonparametric properties of the multidimensional physical parameters that define stellar populations. Methods. For this purpose, we explore the ability of manifold learning to differentiate stellar populations with minimal assumptions about their number and nature. Manifold learning is an unsupervised machine learning technique that seeks to intelligently identify and disentangle manifolds hidden within the input data. To test this method, we make use of Gaia DR3-like synthetic stellar samples generated from the FIRE-2 cosmological simulations. These represent red-giant stars constrained by asteroseismic data from TESS. Results. We reduced the 5D input chrono-chemo-kinematic parameter space into 2D latent space embeddings generated by manifold learning. We then study these embeddings to assess how accurately they represent the original data and whether they contain meaningful information that can be used to discern stellar populations. Conclusions. We conclude that manifold learning possesses promising abilities to differentiate stellar populations when considering realistic observational constraints.
引用
收藏
页数:15
相关论文
共 83 条
  • [1] The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data
    Abdurro'uf
    Accetta, Katherine
    Aerts, Conny
    Aguirre, Victor Silva
    Ahumada, Romina
    Ajgaonkar, Nikhil
    Ak, N. Filiz
    Alam, Shadab
    Prieto, Carlos Allende
    Almeida, Andres
    Anders, Friedrich
    Anderson, Scott F.
    Andrews, Brett H.
    Anguiano, Borja
    Aquino-Ortiz, Erik
    Aragon-Salamanca, Alfonso
    Argudo-Fernandez, Maria
    Ata, Metin
    Aubert, Marie
    Avila-Reese, Vladimir
    Badenes, Carles
    Barba, Rodolfo H.
    Barger, Kat
    Barrera-Ballesteros, Jorge K.
    Beaton, Rachael L.
    Beers, Timothy C.
    Belfiore, Francesco
    Bender, Chad F.
    Bernardi, Mariangela
    Bershady, Matthew A.
    Beutler, Florian
    Bidin, Christian Moni
    Bird, Jonathan C.
    Bizyaev, Dmitry
    Blanc, Guillermo A.
    Blanton, Michael R.
    Boardman, Nicholas Fraser
    Bolton, Adam S.
    Boquien, Mederic
    Borissova, Jura
    Bovy, Jo
    Brandt, W. N.
    Brown, Jordan
    Brownstein, Joel R.
    Brusa, Marcella
    Buchner, Johannes
    Bundy, Kevin
    Burchett, Joseph N.
    Bureau, Martin
    Burgasser, Adam
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2022, 259 (02)
  • [2] Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program
    Adibekyan, V. Zh.
    Sousa, S. G.
    Santos, N. C.
    Mena, E. Delgado
    Gonzalez Hernandez, J. I.
    Israelian, G.
    Mayor, M.
    Khachatryan, G.
    [J]. ASTRONOMY & ASTROPHYSICS, 2012, 545
  • [3] Confirming chemical clocks: asteroseismic age dissection of the Milky Way disc(s)
    Aguirre, V. Silva
    Bojsen-Hansen, M.
    Slumstrup, D.
    Casagrande, L.
    Kawata, D.
    Ciuca, I.
    Handberg, R.
    Lund, M. N.
    Mosumgaard, J. R.
    Huber, D.
    Johnson, J. A.
    Pinsonneault, M. H.
    Serenelli, A. M.
    Stello, D.
    Tayar, J.
    Bird, J. C.
    Cassisi, S.
    Hon, M.
    Martig, M.
    Nissen, P. E.
    Rix, H. W.
    Schonrich, R.
    Sahlholdt, C.
    Trick, W. H.
    Yu, J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (04) : 5487 - 5500
  • [4] Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite
    Aguirre, Victor Silva
    Stello, Dennis
    Stokholm, Amalie
    Mosumgaard, Jakob R.
    Ball, Warrick H.
    Basu, Sarbani
    Bossini, Diego
    Bugnet, Lisa
    Buzasi, Derek
    Campante, Tiago L.
    Carboneau, Lindsey
    Chaplin, William J.
    Corsaro, Enrico
    Davies, Guy R.
    Elsworth, Yvonne
    Garcia, Rafael A.
    Gaulme, Patrick
    Hall, Oliver J.
    Handberg, Rasmus
    Hon, Marc
    Kallinger, Thomas
    Kang, Liu
    Lund, Mikkel N.
    Mathur, Savita
    Mints, Alexey
    Mosser, Benoit
    Orhan, Zeynep Celik
    Rodrigues, Thaise S.
    Vrard, Mathieu
    Yildiz, Mutlu
    Zinn, Joel C.
    Ortel, Sibel
    Beck, Paul G.
    Bell, Keaton J.
    Guo, Zhao
    Jiang, Chen
    Kuszlewicz, James S.
    Kuehn, Charles A.
    Li, Tanda
    Lundkvist, Mia S.
    Pinsonneault, Marc
    Tayar, Jamie
    Cunha, Margarida S.
    Hekker, Saskia
    Huber, Daniel
    Miglio, Andrea
    Monteiro, Mario J. P. F. G.
    Slumstrup, Ditte
    Winther, Mark L.
    Angelou, George
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2020, 889 (02)
  • [5] ETIOLOGY OF CANCER AS STUDIED IN PLATYFISH-SWORDTAIL SYSTEM
    ANDERS, A
    ANDERS, F
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1978, 516 (01) : 61 - 95
  • [6] [Anonymous], 2022, The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package, V935, P167
  • [7] Origin of the elements
    Arcones, Almudena
    Thielemann, Friedrich-Karl
    [J]. ASTRONOMY AND ASTROPHYSICS REVIEW, 2023, 31 (01)
  • [8] Babusiaux C., 2018, AA, V616, pA10
  • [9] CoRoT: Description of the Mission and Early Results
    Baglin, Annie
    Auvergne, Michel
    Barge, Pierre
    Deleuil, Magali
    Michel, Eric
    [J]. TRANSITING PLANETS, PROCEEDINGS, 2009, (253): : 71 - +
  • [10] Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars
    Bensby, T
    Feltzing, S
    Lundström, I
    [J]. ASTRONOMY & ASTROPHYSICS, 2003, 410 (02) : 527 - 551