In-situ real-time magnetic field measurement based on optically-detected electron paramagnetic resonance of spin-polarized rubidium

被引:1
作者
Zou, Sheng [1 ,2 ,3 ,4 ]
Zhang, Quanzhe [1 ,2 ,3 ]
Huo, Yujia [1 ,2 ,3 ]
Zhang, Hong [1 ,4 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310051, Peoples R China
[3] Hefei Natl Lab, Hefei 230088, Peoples R China
[4] Natl Inst Extremely Weak Magnet Field Infrastruct, Hangzhou 310051, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
electron paramagnetic resonance; residual magnetic field; real-time measurement system; spin-polarized atoms;
D O I
10.1088/1361-6501/adc3b3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an approach for in-situ and real-time detection of axial magnetic fields using electron paramagnetic resonance of spin-polarized 87Rb atoms. Our method leverages optically detected peaks in the magnetic resonance dispersion curves, combined with a custom frequency tracking and locking circuit, to enable precise measurements with robust tracking capabilities. In our experiments, the axial magnetic field was measured to be 7.5461 +/- 0.0026 nT, with a system noise level of 8.83 f T Hz-1/2. These results lay a strong foundation for applying the magnetometer in geomagnetic environments.
引用
收藏
页数:11
相关论文
共 32 条
[1]  
Abragam A., 1970, ELECT PARAMAGNETIC R
[2]   Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers [J].
Alem, Orang ;
Sander, Tilmann H. ;
Mhaskar, Rahul ;
LeBlanc, John ;
Eswaran, Hari ;
Steinhoff, Uwe ;
Okada, Yoshio ;
Kitching, John ;
Trahms, Lutz ;
Knappe, Svenja .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (12) :4797-4811
[3]   Sensitive magnetometry based on nonlinear magneto-optical rotation [J].
Budker, D ;
Kimball, DF ;
Rochester, SM ;
Yashchuk, VV ;
Zolotorev, M .
PHYSICAL REVIEW A, 2000, 62 (04) :7
[4]   Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer [J].
Dang, H. B. ;
Maloof, A. C. ;
Romalis, M. V. .
APPLIED PHYSICS LETTERS, 2010, 97 (15)
[5]  
Dumas R. K., 2021, Magnetic Measurement Techniques for Materials Characteriza- tion, P39, DOI [10.1007/978-3-030-70443-83, DOI 10.1007/978-3-030-70443-83]
[6]   Electromagnetic induction imaging with a SERF atomic magnetometer [J].
Fang, Feiyun ;
Wang, Zhaoying .
OPTICS AND LASER TECHNOLOGY, 2025, 182
[7]   Intelligent Suppression of Non-Maneuvering Magnetic Interference of Aeromagnetic UAV [J].
Ge, Jian ;
Xu, Wei ;
Hu, Xiangyun ;
Wu, Tao ;
Feng, Ke ;
Zhang, Yongchao ;
Dong, Haobin ;
Yu, Hong ;
Zhu, Jing ;
Liu, Zheng .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
[8]   A High Sensitivity Closed-Loop Spin-Exchange Relaxation-Free Atomic Magnetometer With Broad Bandwidth [J].
Guo, Qingqian ;
Hu, Tao ;
Chen, Chunqiao ;
Feng, Xiaoyu ;
Wu, Zhongyi ;
Zhang, Yin ;
Zhang, Mingkang ;
Chang, Yan ;
Yang, Xiaodong .
IEEE SENSORS JOURNAL, 2021, 21 (19) :21425-21431
[9]   Free-Induction-Decay Magnetometer Based on a Microfabricated Cs Vapor Cell [J].
Hunter, D. ;
Piccolomo, S. ;
Pritchard, J. D. ;
Brockie, N. L. ;
Dyer, T. E. ;
Riis, E. .
PHYSICAL REVIEW APPLIED, 2018, 10 (01)
[10]   Vector Magnetometry Exploiting Phase-Geometry Effects in a Double-Resonance Alignment Magnetometer [J].
Ingleby, Stuart J. ;
O'Dwyer, Carolyn ;
Griffin, Paul F. ;
Arnold, Aidan S. ;
Riis, Erling .
PHYSICAL REVIEW APPLIED, 2018, 10 (03)