Experimental validation of numerical heat transfer models of an impingement jet at high Reynolds numbers

被引:0
作者
Trampe, Eileen [1 ]
Bueschgens, Dominik [1 ]
Pfeifer, Herbert [1 ]
Wuppermann, Christian [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Ind Furnaces & Heat Engn, Aachen, Germany
关键词
Heat transfer; Convective heat transfer; Impingement jet characteristics; Particle Image Velocity; Numerical Modelling; FLOW; SURFACE; FLAT; VELOCITY; ARRAYS;
D O I
10.1016/j.applthermaleng.2025.126350
中图分类号
O414.1 [热力学];
学科分类号
摘要
In industrial thermal processing plants, metal strips are quenched in cooling zones by impingement jets, with convection being the dominant heat transfer mechanism. To generate the impingement jets, gas is accelerated through a nozzle system and directed onto the material surface, resulting in rapid and uniform cooling. The present work involves the experimental investigation of the heat transfer and associated flow of impingement jets using PIV on a single slot (W = 5 mm) and a single round nozzle (D = 25 mm). These experimental methods form the basis for the evaluation of numerical turbulence models. The turbulence models selected in this work are: SST k-omega model, Generalised k-omega (GEKO) model and the Reynolds Stress Model. The investigations are carried out at a nozzle exit velocity of u approximate to 51 m/s (ReSlot = 34,490, ReRound = 88.780). Compared to other studies with a Reynolds number of below 23,000, the prediction accuracy is less due to the high Reynolds number. The PIV measurement shows that the flow velocities are correctly modelled, but the turbulent kinetic energy can only be poorly predicted.trampe@iob.rwth-aachen.de
引用
收藏
页数:12
相关论文
共 47 条
  • [11] Cebeci T., 2013, Analysis of turbulent flows with computer programs
  • [12] Numerical Prediction of the Second Peak in the Nusselt Number Distribution from an Impinging Round Jet
    Chitsazan, Ali
    Klepp, Georg
    Glasmacher, Birgit
    [J]. INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2021, 39 (04) : 1243 - 1252
  • [13] LES of a turbulent jet impinging on a heated wall using high-order numerical schemes
    Dairay, T.
    Fortune, V.
    Lamballais, E.
    Brizzi, L. E.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2014, 50 : 177 - 187
  • [14] den Ouden C., 1974, P INT HEAT TRANSF C
  • [15] Local and area average Nusselt number correlation for a circular impinging jet over a flat plate
    Dhruw, Laxmikant
    Kothadia, Hardik B.
    Rajagopal, Arun Kumar
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (24) : 14031 - 14050
  • [16] Analysis of heat transfer and flow characteristics in turbulent impinging jet
    Draksler, Martin
    Koncar, Bostjan
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2011, 241 (04) : 1248 - 1254
  • [17] STREAMWISE FLOW AND HEAT-TRANSFER DISTRIBUTIONS FOR JET ARRAY IMPINGEMENT WITH CROSS-FLOW
    FLORSCHUETZ, LW
    TRUMAN, CR
    METZGER, DE
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1981, 103 (02): : 337 - 342
  • [18] Gangoli Rao A., 2009, Heat Transfer Characteristics of a Multiple Jet Impingement System, V1, P314
  • [19] WARMEUBERGANG BEI DUSENSTROMUNG SENKRECHT ZUR AUSTAUSCHFLACHE
    HILGEROTH, E
    [J]. CHEMIE INGENIEUR TECHNIK, 1965, 37 (12) : 1264 - +
  • [20] EFFECT OF JET-JET SPACING ON CONVECTIVE HEAT-TRANSFER TO CONFINED, IMPINGING ARRAYS OF AXISYMMETRICAL AIR-JETS
    HUBER, AM
    VISKANTA, R
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1994, 37 (18) : 2859 - 2869