Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals

被引:1
作者
Lin, Husitu [1 ]
Zhang, Shuangkun [1 ]
Zhao, Dianfa [1 ]
Wang, Yongkang [1 ]
Liu, Wei [1 ]
Yang, Fan [4 ]
Liu, Jianjun [3 ]
Yan, Dongpeng [2 ]
Wu, Zhanpeng [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[3] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[4] Weifang Univ, Sch Chem & Chem Engn & Environm Engn, Weifang 261061, Peoples R China
基金
美国国家科学基金会;
关键词
Polyphosphazene; CsPbBr; 3; Quantum dots; Encapsulation; Luminescent properties; High stability; SOLAR-CELLS; EFFICIENCY;
D O I
10.1016/j.cclet.2024.109795
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyphosphazene with phenoxy or 4-ester phenoxy as pendent groups are demonstrated as both ligands and host matrices for CsPbBr3 perovskite nanocrystals (NCs). These polymers produced flexible nanocomposite films with excellent NCs dispersion, optical transparency and stability in various extreme conditions. Both films remained stable even after 30 days of air storage. CsPbBr3 /poly[bis(phenoxy phosphazene)] (PBPP) delivered better air and light stability, and CsPbBr3 /poly [bis(4-ester phenoxy)phosphazene] (PBEPP) exhibited superior water and heat resistance. CsPbBr3 /PBEPP showed a greater increase in fluorescence intensity under 365 nm UV light and demonstrated a 10 % luminescence increase after 96 h of water immersion and even at high temperature (150 degrees C). These findings thus provide new insight into flexible luminescent CsPbBr3 films with high stability in optoelectronic applications. (c) 2025 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页数:6
相关论文
共 38 条
  • [1] Kambhampati P., J. Phys. Chem. Lett., 12, pp. 4769-4779, (2021)
  • [2] Cotta M.A., ACS Appl. Nano Mater., 3, pp. 4920-4924, (2020)
  • [3] Hao N., Qiu Y., Lu J., Chin. Chem. Lett., 32, pp. 2861-2864, (2021)
  • [4] Zhang C., Li T., Pu L., Chin. Chem. Lett., 31, pp. 2499-2502, (2020)
  • [5] Liu W., Xie H., Guo X., Opt Mater., 136, (2023)
  • [6] Wang Z., Fu R., Li F., Adv. Funct. Mater., 31, (2021)
  • [7] Kumar N., Rani J.N., Kurchania R., Sol Energy, 221, pp. 197-205, (2021)
  • [8] Yan D., Shi T., Zang Z., Small, 15, (2019)
  • [9] Cha J.H., Han J.H., Yin W., J. Phys. Chem. Lett., 8, pp. 565-570, (2017)
  • [10] de Leon A.S., de la Mata M., Sanchez-Alarcon I.R., ACS Appl. Mater. Interfaces, 14, pp. 20023-20031, (2022)