SEMI-SUPERVISED DEEP LEARNING FOR CHANGE DETECTION IN AGRICULTURAL FIELDS USING SENTINEL-2 IMAGERY

被引:0
作者
Tsardanidis, Iason [1 ]
Kontoes, Charalampos [1 ]
机构
[1] Natl Observ Athens, BEYOND EO Ctr, IAASARS, Athens, Greece
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
关键词
change detection; deep learning; agriculture monitoring; biomass removal; remote sensing; NETWORK;
D O I
10.1109/IGARSS53475.2024.10641259
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper introduces an original application for detecting changes related to diverse agricultural activities through the analysis of bitemporal Sentinel-2 satellite imagery. Operating without pre-existing samples, our approach generates pseudo-labels using common rule-based Earth Observation (EO) algorithms to identify cases of abrupt loss of vegetation in pairs of consecutive cloud-free images. These artificially generated samples form the basis for training several state-of-the-art change detection (CD) methods. Evaluation on a small ground truth sample, annotated through photo-interpretation by experts, demonstrates our semi-supervised methodology's high predictive accuracy for agricultural events detection across diverse terrains and cropping practices (i.e., mowing, grazing, harvest, plowing, stubble burning, etc.). The proposed implementation offers a cost-effective, scalable solution for real-time monitoring, providing valuable insights for agricultural activity and facilitating informed decision-making in farm management and biodiversity strategies.
引用
收藏
页码:1942 / 1945
页数:4
相关论文
共 15 条
[1]   A TRANSFORMER-BASED SIAMESE NETWORK FOR CHANGE DETECTION [J].
Bandara, Wele Gedara Chaminda ;
Patel, Vishal M. .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :207-210
[2]   Remote Sensing Image Change Detection With Transformers [J].
Chen, Hao ;
Qi, Zipeng ;
Shi, Zhenwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[3]  
Daudt RC, 2018, IEEE IMAGE PROC, P4063, DOI 10.1109/ICIP.2018.8451652
[4]   Mowing detection using Sentinel-1 and Sentinel-2 time series for large scale grassland monitoring [J].
De Vroey, Mathilde ;
de Vendictis, Laura ;
Zavagli, Massimo ;
Bontemps, Sophie ;
Heymans, Diane ;
Radoux, Julien ;
Koetz, Benjamin ;
Defourny, Pierre .
REMOTE SENSING OF ENVIRONMENT, 2022, 280
[5]   Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks [J].
Garnot, Vivien Sainte Fare ;
Landrieu, Loic .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :4852-4861
[6]  
Hardaker J.B., 2015, Coping with Risk in Agriculture: Applied Decision Analysis
[7]   Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model [J].
Liu, Yi ;
Pang, Chao ;
Zhan, Zongqian ;
Zhang, Xiaomeng ;
Yang, Xue .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) :811-815
[8]   An Analysis of Bare Soil Occurrence in Arable Croplands for Remote Sensing Topsoil Applications [J].
Mzid, Nada ;
Pignatti, Stefano ;
Huang, Wenjiang ;
Casa, Raffaele .
REMOTE SENSING, 2021, 13 (03) :1-24
[9]   Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications [J].
Segarra, Joel ;
Buchaillot, Maria Luisa ;
Araus, Jose Luis ;
Kefauver, Shawn C. .
AGRONOMY-BASEL, 2020, 10 (05)
[10]   SEMI-SUPERVISED PHENOLOGY ESTIMATION IN COTTON PARCELS WITH SENTINEL-2 TIME-SERIES [J].
Sitokonstantinou, Vasileios ;
Koukos, Alkiviadis ;
Kontoes, Charalampos ;
Bartsotas, Nikolaos S. ;
Karathanassi, Vassilia .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :8491-8494