Bipartite Ramsey number pairs that involve combinations of cycles and odd paths

被引:0
作者
Joubert, Ernst J. [1 ]
机构
[1] Univ Johannesburg, Dept Math, Auckland Pk 2006, South Africa
基金
新加坡国家研究基金会;
关键词
Bipartite graph; Ramsey; Cycle; Path;
D O I
10.1016/j.disc.2024.114283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For bipartite graphs G 1 , G 2 , ..., G k , the bipartite Ramsey number b(G1, ( G 1 , G 2 , ..., Gk) k ) is the least positive integer b , so that any coloring of the edges of K b,b with k colors, will result in a copy of Gi i in the i th color, for some i . For bipartite graphs G 1 and G 2 , the bipartite Ramsey number pair ( a, b ) , denoted by bp(G1, p ( G 1 , G 2 ) = ( a, b ) , is an ordered pair of integers such that for any blue-red coloring of the edges of K a ' , b ' , with a ' > b ' , either a blue copy of G 1 exists or a red copy of G 2 exists if and only if a ' > a and b ' > b . In [4], Faudree and Schelp considered bipartite Ramsey number pairs involving paths. Recently, Joubert, Hattingh and Henning showed, in [7] and [8], that b p ( C 2 s , C 2 s ) = ( 2 s, 2s s -1) 1 ) and b(P2s, ( P 2 s , C 2 s ) = 2s s - 1, for sufficiently large positive integers s . In this paper we will focus our attention on finding exact values for bipartite Ramsey number pairs that involve cycles and odd paths. Specifically, let s and r be sufficiently large positive integers. We will prove that b p ( C 2 s , P 2 r + 1 ) = ( s + r, s + r -1) 1 ) if r > s + 1, b p ( P 2 s + 1 , C 2 r ) = ( s + r, s + r) ) if r = s + 1, and b p ( P 2 s + 1 , C 2 r ) = ( s + r - 1, , s + r - 1) ) if r > s + 2. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:18
相关论文
共 12 条
[1]   3-Color bipartite Ramsey number of cycles and paths [J].
Bucic, Matija ;
Letzter, Shoham ;
Sudakov, Benny .
JOURNAL OF GRAPH THEORY, 2019, 92 (04) :445-459
[2]  
Chartrand G., 1996, GRAPHS DIGRAPHS
[3]  
ERDOS P, 1956, B AM MATH SOC, V62, P427
[4]   PATH-PATH RAMSEY-TYPE NUMBERS FOR COMPLETE BIPARTITE GRAPH [J].
FAUDREE, RJ ;
SCHELP, RH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (02) :161-173
[5]   AN EXTREMAL PROBLEM FOR PATHS IN BIPARTITE GRAPHS [J].
GYARFAS, A ;
ROUSSEAU, CC ;
SCHELP, RH .
JOURNAL OF GRAPH THEORY, 1984, 8 (01) :83-95
[6]   Some multicolor bipartite Ramsey numbers involving cycles and a small number of colors [J].
Hattingh, Johannes H. ;
Joubert, Ernst J. .
DISCRETE MATHEMATICS, 2018, 341 (05) :1325-1330
[7]   BIPARTITE RAMSEY NUMBER PAIRS INVOLVING CYCLES [J].
Joubert, Ernst J. ;
Hattingh, Johannes H. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2025, 45 (01) :151-190
[8]   On the cycle-path bipartite Ramsey number [J].
Joubert, Ernst J. ;
Henning, Michael A. .
DISCRETE MATHEMATICS, 2024, 347 (02)
[9]   Some Generalized Bipartite Ramsey Numbers Involving Short Cycles [J].
Joubert, Ernst J. .
GRAPHS AND COMBINATORICS, 2017, 33 (02) :433-448
[10]   Multicolor bipartite Ramsey numbers for paths, cycles, and stripes [J].
Rowshan, Yaser ;
Gholami, Mostafa .
COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01)