Dynamics of two species predator-prey model with spatially nonhomogeneous diffusion strategy

被引:0
作者
Ma, Li [4 ]
Liang, Haihua [1 ,2 ]
Wang, Huatao [3 ]
机构
[1] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou 510320, Peoples R China
[2] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Guangdong, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430000, Hubei, Peoples R China
[4] Guangdong Polytech Sci & Technol, Coll Comp Engn Technol, Zhuhai 519090, Guangdong, Peoples R China
关键词
Density dependent diffusion; Implicit function theorem; Spatial heterogeneity; Hopf bifurcation; Stability; POSITIVE SOLUTIONS; BIFURCATION; COMPETITION; STABILITY; BEHAVIOR;
D O I
10.1016/j.jmaa.2025.129412
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a Holling type-II predator-prey system with spatially nonhomogeneous diffusion strategy. By employing the methods of the implicit function theorem, eigenvalue theory and bifurcation theory, we analyze the stability/instability of the positive steady state and explore the existence of a Hopf bifurcation when the diffusion rate is large. Furthermore, when the driven diffusion functions Q1(x) = eqm(x) and Q2(x) equivalent to 1, we detailed discuss how the parameter q of the density dependent diffusion Q1(x) affect the occurrence of Hopf bifurcations and the values of Hopf bifurcations.<br /> (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:32
相关论文
共 27 条
  • [1] Braverman E., Kamrujjaman M., Lotka systems with directed dispersal dynamics: competition and influence of diffusion strategies, Math. Biosci., 279, pp. 1-12, (2016)
  • [2] Chen S., Yu J., Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete Contin. Dyn. Syst., 38, 1, (2018)
  • [3] Du Y., Lou Y., Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation, Proc. R. Soc. Edinb., Sect. A, Math., 131, 2, pp. 321-349, (2001)
  • [4] Du Y., Hsu S., A diffusive predator-prey model in heterogeneous environment, J. Differ. Equ., 203, 2, pp. 331-364, (2004)
  • [5] Du Y., Shi J., Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Am. Math. Soc., 359, 9, pp. 4557-4593, (2007)
  • [6] Han W., Bao Z., Hopf bifurcation analysis of a reaction-diffusion Se'lkov system, J. Math. Anal. Appl., 356, pp. 633-641, (2009)
  • [7] Hassard B.D., Kazarinoff N.D., Wan Y., Theory and Applications of Hopf Bifurcation, (1981)
  • [8] Jin H.Y., Wang Z.A., Global stability of prey-taxis systems, J. Differ. Equ., 262, 3, pp. 1257-1290, (2017)
  • [9] Jin H.Y., Wang Z.A., Global dynamics and spatio-temporal patterns of predator-prey systems with densitydependent motion, Eur. J. Appl. Math., 32, 4, pp. 652-682, (2021)
  • [10] Ko W., Ryu K., Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differ. Equ., 231, pp. 534-550, (2006)