共 21 条
Capturing a methanogenic carbon monoxide dehydrogenase/acetyl-CoA synthase complex via cryogenic electron microscopy
被引:2
|作者:
Biester, Alison
[1
]
Grahame, David A.
[2
]
Drennan, Catherine L.
[1
,3
,4
]
机构:
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] Uniformed Serv Univ Hlth Sci, Dept Biochem & Mol Biol, Bethesda, MD 20814 USA
[3] MIT, Dept Biol, Cambridge, MA 02139 USA
[4] MIT, HHMI, Cambridge, MA 02139 USA
来源:
关键词:
greenhouse gases;
methanogenesis;
channels;
cryogenic electron microscopy;
IRON-SULFUR PROTEIN;
ACETYL-COA;
CLOSTRIDIUM-THERMOACETICUM;
METHANOSARCINA-THERMOPHILA;
RHODOSPIRILLUM-RUBRUM;
CRYSTAL-STRUCTURE;
ENZYME COMPLEX;
C-C;
CLUSTER;
METHYLATION;
D O I:
10.1073/pnas.2410995121
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Approximately two- thirds of the estimated one- billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni- Fe- S- containing A- cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH3+). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO2) by a Ni- Fe- S- containing C- cluster within the enzyme carbon monoxide dehydrogenase (CODH). Although structures have been solved of CODH/ACS from acetogens, which use these enzymes to make acetate from CO2, no structure of a CODH/ACS from a methanogen has been reported. In this work, we use cryo- electron microscopy to reveal the structure of a methanogenic CODH and CODH/ACS from Methanosarcina thermophila (MetCODH/ACS). We find that the N- terminal domain of acetogenic ACS, which is missing in all methanogens, is replaced by a domain of CODH. This CODH domain provides a channel for CO to travel between the two catalytic Ni-Fe-S clusters. It generates the binding surface for ACS and creates a remarkably similar CO alcove above the A- cluster using residues from CODH rather than ACS. Comparison of our Met CODH/ACS structure with our Met CODH structure reveals a molecular mechanism to restrict gas flow from the CO channel when ACS departs, preventing CO escape into the cell. Overall, these long- awaited structures of a methanogenic CODH/ ACS reveal striking functional similarities to their acetogenic counterparts despite a substantial difference in domain organization.
引用
收藏
页数:11
相关论文