Capturing a methanogenic carbon monoxide dehydrogenase/acetyl-CoA synthase complex via cryogenic electron microscopy

被引:2
|
作者
Biester, Alison [1 ]
Grahame, David A. [2 ]
Drennan, Catherine L. [1 ,3 ,4 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] Uniformed Serv Univ Hlth Sci, Dept Biochem & Mol Biol, Bethesda, MD 20814 USA
[3] MIT, Dept Biol, Cambridge, MA 02139 USA
[4] MIT, HHMI, Cambridge, MA 02139 USA
关键词
greenhouse gases; methanogenesis; channels; cryogenic electron microscopy; IRON-SULFUR PROTEIN; ACETYL-COA; CLOSTRIDIUM-THERMOACETICUM; METHANOSARCINA-THERMOPHILA; RHODOSPIRILLUM-RUBRUM; CRYSTAL-STRUCTURE; ENZYME COMPLEX; C-C; CLUSTER; METHYLATION;
D O I
10.1073/pnas.2410995121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Approximately two- thirds of the estimated one- billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni- Fe- S- containing A- cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH3+). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO2) by a Ni- Fe- S- containing C- cluster within the enzyme carbon monoxide dehydrogenase (CODH). Although structures have been solved of CODH/ACS from acetogens, which use these enzymes to make acetate from CO2, no structure of a CODH/ACS from a methanogen has been reported. In this work, we use cryo- electron microscopy to reveal the structure of a methanogenic CODH and CODH/ACS from Methanosarcina thermophila (MetCODH/ACS). We find that the N- terminal domain of acetogenic ACS, which is missing in all methanogens, is replaced by a domain of CODH. This CODH domain provides a channel for CO to travel between the two catalytic Ni-Fe-S clusters. It generates the binding surface for ACS and creates a remarkably similar CO alcove above the A- cluster using residues from CODH rather than ACS. Comparison of our Met CODH/ACS structure with our Met CODH structure reveals a molecular mechanism to restrict gas flow from the CO channel when ACS departs, preventing CO escape into the cell. Overall, these long- awaited structures of a methanogenic CODH/ ACS reveal striking functional similarities to their acetogenic counterparts despite a substantial difference in domain organization.
引用
收藏
页数:11
相关论文
共 21 条