Genome-Wide Identification and Analysis of the MYC Gene Family in Cotton: Evolution and Expression Profiles During Normal Growth and Stress Response

被引:0
|
作者
Chen, Jingxi [1 ,2 ]
Wang, Long [1 ]
Wang, Xiufang [3 ]
Lu, Lu [1 ]
Han, Peng [1 ]
Zhang, Caidie [1 ]
Han, Min [1 ]
Xiang, Siyu [1 ]
Wang, Haibiao [4 ]
Xuan, Lizhong [4 ]
Li, Zhibo [1 ]
Lin, Hairong [1 ]
Nie, Xinhui [1 ]
Wu, Yuanlong [1 ,2 ]
机构
[1] Shihezi Univ, Agr Coll, Shihezi 832003, Peoples R China
[2] Xinjiang Prod & Construct Crops, Key Lab Oasis Ecol Agr, Shihezi 832003, Peoples R China
[3] Xinjiang Prod & Construct Corps Seed Management St, Urumqi 830011, Peoples R China
[4] Xinjiang Prod & Construct Corps Agr Technol Extens, Urumqi 830011, Peoples R China
关键词
cotton; <italic>MYC</italic> gene family; gene structure; gene expression; evolution; ABSCISIC-ACID; TRANSCRIPTION; RESISTANCE; BIOSYNTHESIS; ACTIVATION; INDUCTION; TOLERANCE; DEFENSE; BHLH;
D O I
10.3390/genes16010020
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: The gene family of myelomatosis (MYC), serving as a transcription factor in the jasmonate (JA) signaling pathway, displays a significant level of conservation across diverse animal and plant species. Cotton is the most widely used plant for fiber production. Nevertheless, there is a paucity of literature reporting on the members of MYCs and how they respond to biotic stresses in cotton. Methods: Bioinformatics analysis was used to mine the MYC gene family in cotton based on InterPro, cottongen, etc. Results: The gene structure, conserved motifs, and upstream open reading frames of 32 GhMYCs in Gossypium hirsutum were identified. Moreover, it was anticipated that the GT1-motif is the most abundant in GhMYCs, indicating that the GT1-motif plays a significant role in light-responsive GhMYCs. The expression patterns of GhMYCs under biotic stresses including V. dahliae and Aphid gossypii were evaluated, suggesting that GhMYCs in class-1 and -3 GhMYCs, which function as negative regulators, are involved in resistance to verticillium wilt and aphids. The class-3 GhMYCs genes were found to be mostly expressed in female tissues. Interestingly, it was also determined that the homeologous expression bias within GhMYCs in cotton was uncovered, and results showed that the gene expression of class-1A and class-2 GhMYCs in the Dt sub-genome may have a direct impact on gene function. Conclusions: This study provides a research direction for researchers and breeders to enhance cotton traits through manipulating individual or multiple homeologs, which laid a foundation for further study of the molecular characteristics and biological functions of GhMYC gene.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Genome-wide identification and characterization of small auxin-up RNA (SAUR) gene family in plants: evolution and expression profiles during normal growth and stress response
    Zhang, Hao
    Yu, Zhenjia
    Yao, Xiaodie
    Chen, Jingli
    Chen, Xing
    Zhou, Huiwen
    Lou, Yuxia
    Ming, Feng
    Jin, Yue
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [2] Genome-wide identification and characterization of small auxin-up RNA (SAUR) gene family in plants: evolution and expression profiles during normal growth and stress response
    Hao Zhang
    Zhenjia Yu
    Xiaodie Yao
    Jingli Chen
    Xing Chen
    Huiwen Zhou
    Yuxia Lou
    Feng Ming
    Yue Jin
    BMC Plant Biology, 21
  • [3] Genome-wide identification, evolution and expression profiles analysis of bHLH gene family in Castanea mollissima
    Yu, Liyang
    Fei, Cao
    Wang, Dongsheng
    Huang, Ruimin
    Xuan, Wang
    Guo, Chunlei
    Jing, Liu
    Meng, Wang
    Yi, Lu
    Zhang, Haie
    Zhang, Jingzheng
    FRONTIERS IN GENETICS, 2023, 14
  • [4] Genome-wide identification of the MIOX gene family and their expression profile in cotton development and response to abiotic stress
    Li, Zhaoguo
    Liu, Zhen
    Wei, Yangyang
    Liu, Yuling
    Xing, Linxue
    Liu, Mengjie
    Li, Pengtao
    Lu, Quanwei
    Peng, Renhai
    PLOS ONE, 2021, 16 (07):
  • [5] Genome-wide identification and expression profiles analysis of the authentic response regulator gene family in licorice
    Shi, Yanping
    Ding, Guohua
    Shen, Haitao
    Li, Zihan
    Li, Hongbin
    Xiao, Guanghui
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [6] Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress
    Tao Xie
    Chengjie Chen
    Chuhao Li
    Jiarou Liu
    Chaoyang Liu
    Yehua He
    BMC Genomics, 19
  • [7] Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress
    Xie, Tao
    Chen, Chengjie
    Li, Chuhao
    Liu, Jiarou
    Liu, Chaoyang
    He, Yehua
    BMC GENOMICS, 2018, 19
  • [8] Genome-wide analysis of the soybean DREB gene family: Identification, genomic organization and expression profiles in response to drought stress
    Zhou, Yaxing
    Zhou, Wei
    Liu, Hui
    Liu, Peng
    Li, Zhigang
    PLANT BREEDING, 2020, 139 (06) : 1158 - 1167
  • [9] Genome-Wide Identification and Expression Analysis of ADK Gene Family Members in Cotton under Abiotic Stress
    Huang, Peijun
    Lin, Ziwei
    Zhang, Yuzhi
    Gao, Yu
    Tan, Songjuan
    Wang, Shuai
    Cao, Xiaoyu
    Shi, Hongyan
    Sun, Chao
    Bai, Jiangping
    Ma, Xiongfeng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (14)
  • [10] Genome-wide identification and analysis of the cotton ALDH gene family
    Gu, Haijing
    Pan, Zongjin
    Jia, Mengxue
    Fang, Hui
    Li, Junyi
    Qi, Yingxiao
    Yang, Yixuan
    Feng, Wenxiang
    Gao, Xin
    Ditta, Allah
    Khan, Muhammad K. R.
    Wang, Wei
    Cao, Yunying
    Wang, Baohua
    BMC GENOMICS, 2024, 25 (01):