JoAPR: Cleaning the Lens of Prompt Learning for Vision-Language Models

被引:0
|
作者
Guo, Yuncheng [1 ]
Guo, Xiaodong [1 ]
机构
[1] Fudan Univ, Dept Elect Engn, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52733.2024.02711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Leveraging few-shot datasets in prompt learning for Vision-Language Models eliminates the need for manual prompt engineering while highlighting the necessity of accurate annotations for the labels. However, high-level or complex label noise challenges prompt learning for Vision-Language Models. Aiming at this issue, we propose a new framework for improving its robustness. Specifically, we introduce the Joint Adaptive Partitioning for Label Refurbishment (JoAPR), a structured framework encompassing two key steps. 1) Data Partitioning, where we differentiate between clean and noisy data using joint adaptive thresholds. 2) Label Refurbishment, where we correct the labels based on the partition outcomes before retraining the network. Our comprehensive experiments confirm that JoAPR substantially enhances the robustness of prompt learning for Vision-Language Models against label noise, offering a promising direction for future research.
引用
收藏
页码:28695 / 28705
页数:11
相关论文
共 50 条
  • [21] Fine-grained multi-modal prompt learning for vision-language models
    Liu, Yunfei
    Deng, Yunziwei
    Liu, Anqi
    Liu, Yanan
    Li, Shengyang
    NEUROCOMPUTING, 2025, 636
  • [22] Distribution-Aware Prompt Tuning for Vision-Language Models
    Cho, Eulrang
    Kim, Jooyeon
    Kim, Hyunwoo J.
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21947 - 21956
  • [23] Understanding and Mitigating Overfitting in Prompt Tuning for Vision-Language Models
    Ma, Chengcheng
    Liu, Yang
    Deng, Jiankang
    Xie, Lingxi
    Dong, Weiming
    Xu, Changsheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4616 - 4629
  • [24] A Slim Prompt-Averaged Consistency prompt learning for vision-language model
    He, Siyu
    Wang, Shengsheng
    Long, Sifan
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [25] Conceptual Codebook Learning for Vision-Language Models
    Zhang, Yi
    Yu, Ke
    Wu, Siqi
    He, Zhihai
    COMPUTER VISION - ECCV 2024, PT LXXVII, 2024, 15135 : 235 - 251
  • [26] Exploring Vision-Language Models for Imbalanced Learning
    Wang Y.
    Yu Z.
    Wang J.
    Heng Q.
    Chen H.
    Ye W.
    Xie R.
    Xie X.
    Zhang S.
    International Journal of Computer Vision, 2024, 132 (01) : 224 - 237
  • [27] Why Is Prompt Tuning for Vision-Language Models Robust to Noisy Labels?
    Wu, Cheng-En
    Tian, Yu
    Yu, Haichao
    Wang, Heng
    Morgado, Pedro
    Hu, Yu Hen
    Yang, Linjie
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 15442 - 15451
  • [28] Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models
    Kan, Baoshuo
    Wang, Teng
    Lu, Wenpeng
    Zhen, Xiantong
    Guan, Weili
    Zheng, Feng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 15624 - 15634
  • [29] Debiased Fine-Tuning for Vision-Language Models by Prompt Regularization
    Zhu, Beier
    Niu, Yulei
    Lee, Saeil
    Hur, Minhoe
    Zhang, Hanwang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 3834 - 3842
  • [30] SwapPrompt: Test-Time Prompt Adaptation for Vision-Language Models
    Ma, Xiaosong
    Zhang, Jie
    Guo, Song
    Xu, Wenchao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,