Difference Finite Element Methods Based on Different Discretization Elements for the Four-Dimensional Poisson Equation

被引:0
|
作者
Liu, Yaru [1 ]
He, Yinnian [1 ,2 ]
Feng, Xinlong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
关键词
4D Poisson equation; difference finite element method; hexahedral element; pentahe- dral element; tetrahedral element; VOLUME;
D O I
10.4208/eajam.2023-233.200224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes difference finite element (DFE) methods for the Poisson equation in a four-dimensional (4D) region omega x (0, L4). The method converts the Poisson equation in a 4D region into a series of three-dimensional (3D) subproblems by the finite difference discretization in (0, L4) and deals with the 3D subproblems by the finite element discretization in omega. In performing the finite element discretization, we select different discretization elements in the region omega: hexahedral, pentahedral, and tetrahedral elements. Moreover, we prove the stability of the DFE solution uh and deduce the first-order convergence of uh with respect to the exact solution u under H1-error. Finally, three numerical examples are given to verify the accuracy and effectiveness of the DFE method.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A Difference Mixed Finite Element Method for the Three Dimensional Poisson Equation
    Zhang, Qi
    Huang, Pengzhan
    He, Yinnian
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024,
  • [2] The finite volume element methods for Poisson equation based on Adini's element
    Yu, Changhua
    Wang, Yanhe
    Li, Yonghai
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5537 - 5549
  • [3] CONVERGENCE OF A STRANG SPLITTING FINITE ELEMENT DISCRETIZATION FOR THE SCHRODINGER-POISSON EQUATION
    Auzinger, Winfried
    Kassebacher, Thomas
    Koch, Othmar
    Thalhammer, Mechthild
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (04): : 1245 - 1278
  • [4] GEOMETRY-DRIVEN FINITE ELEMENT FOR FOUR-DIMENSIONAL PRINTING
    Kwok, Tsz-Ho
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 1, 2017,
  • [5] Minimal positive stencils in meshfree finite difference methods for the Poisson equation
    Seibold, Benjamin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 198 (3-4) : 592 - 601
  • [6] GDFE: Geometry-Driven Finite Element for Four-Dimensional Printing
    Kwok, Tsz-Ho
    Chen, Yong
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (11):
  • [7] Intrinsic finite element methods for the computation of fluxes for Poisson’s equation
    P. G. Ciarlet
    P. Ciarlet
    S. A. Sauter
    C. Simian
    Numerische Mathematik, 2016, 132 : 433 - 462
  • [8] ON FINITE-ELEMENT METHODS FOR THE EULER-POISSON-DARBOUX EQUATION
    GENIS, AM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) : 1080 - 1106
  • [9] Combinations of collocation and finite-element methods for Poisson's equation
    Hu, Hsin-Yun
    Li, Zi-Cai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (12) : 1831 - 1853
  • [10] Intrinsic finite element methods for the computation of fluxes for Poisson's equation
    Ciarlet, P. G.
    Ciarlet, P., Jr.
    Sauter, S. A.
    Simian, C.
    NUMERISCHE MATHEMATIK, 2016, 132 (03) : 433 - 462