Genome-Wide Identification of Peanut Pyruvate Kinase Gene Family and Their Potential Roles in Seed Germination and Drought Stress Responses

被引:0
|
作者
Chen, Guanlong [1 ]
Chen, Shaona [1 ]
Peng, Zepeng [1 ]
Zou, Zhirou [1 ]
Cheng, Bangyi [1 ]
Wan, Xiaorong [1 ]
Zheng, Zhao [2 ]
Yang, Bin [1 ]
机构
[1] Zhongkai Univ Agr & Engn, Guangzhou Key Lab Res & Dev Crop Germplasm Resourc, Guangzhou 510225, Peoples R China
[2] South China Normal Univ, Sch Life Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
peanut; PK gene family; expression analysis; seed germination; drought stress; DEVELOPING CASTOR; BIOSYNTHESIS; PURIFICATION; EXPRESSION; EVOLUTION; SEQUENCE; PATHWAY;
D O I
10.3390/horticulturae11020200
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Pyruvate kinase (PK), a pivotal enzyme in glycolysis, serves as a multifunctional regulator of plant growth, development, and stress adaptation. Despite its significance, the functional roles of PKs in peanut remain largely unexplored. Here, we performed a genome-wide identification and systematic characterization of PK genes in cultivated peanut, identifying 21 AhPK genes (AhPK1-AhPK21). Phylogenetic classification divided these genes into two subfamilies: PKc (comprising PKc-1 and PKc-2 subgroups) and PKp (comprising PKp-alpha and PKp-beta subgroups). AhPK members within the same subfamily shared similar motif composition patterns, while genes from different subgroups showed significantly different exon-intron organizations. Collinearity analysis indicated that segmental duplication events and purifying selection predominantly drove the expansion and evolution of the AhPK family. Evolutionary analysis further indicated closer evolutionary relationships between peanut PKs and those of Arabidopsis than with rice. Predicted protein interaction networks suggested that AhPKs can form polymeric protein complexes (e.g., PKp-alpha and PKp-beta) or interact with some important proteins, including FBA4, F14O13.7, APY, DLD, and T16L4.190. Promoter analysis identified abundant cis-regulatory elements associated with light responses, stress responses, hormone responses, and development. Expression pattern analysis demonstrated the significant induction of multiple AhPK genes during seed germination and under polyethylene glycol (PEG)-induced drought stress or abscisic acid (ABA) treatment. Collectively, these findings provide critical insights into the functional roles of AhPK genes in seed germination and drought stress responses, establishing a foundation for future mechanistic studies.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley
    Zhang, Xian
    Zhang, Lantian
    Chen, Yuyu
    Wang, Siyi
    Fang, Yunxia
    Zhang, Xiaoqin
    Wu, Yuhuan
    Xue, Dawei
    PLANT GROWTH REGULATION, 2021, 94 (01) : 49 - 60
  • [32] Genome-wide identification and characterization of the MdBZR1 gene family in apple and their roles in improvement of drought tolerance
    Jiang, Shan
    Li, Sen
    Liu, Xiao
    Wen, Binbin
    Wang, Ning
    Zhang, Rui
    Li, Dongmei
    Chen, Xiude
    Fu, Xiling
    Xiao, Wei
    Tan, Qiuping
    Li, Ling
    SCIENTIA HORTICULTURAE, 2021, 288
  • [33] Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley
    Xian Zhang
    Lantian Zhang
    Yuyu Chen
    Siyi Wang
    Yunxia Fang
    Xiaoqin Zhang
    Yuhuan Wu
    Dawei Xue
    Plant Growth Regulation, 2021, 94 : 49 - 60
  • [34] Genome-wide identification and drought stress-induced expression analysis of the NHX gene family in potato
    Ji, Yihong
    Liu, Zhen
    Liu, Chang
    Shao, Ziying
    Zhang, Ning
    Suo, Meiqing
    Liu, Yuhui
    Wang, Lei
    FRONTIERS IN GENETICS, 2024, 15
  • [35] Genome-Wide Identification, Evolutionary Analysis, and Stress Responses of the GRAS Gene Family in Castor Beans
    Xu, Wei
    Chen, Zexi
    Ahmed, Naeem
    Han, Bing
    Cui, Qinghua
    Liu, Aizhong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (07)
  • [36] Genome-wide characterization of major latex protein gene family in peanut and expression analyses under drought and waterlogging stress
    Li, Jie
    Zeng, Ruier
    Huang, Zijun
    Gao, Hengkuan
    Liu, Shiyuan
    Gao, Yu
    Yao, Suzhe
    Wang, Ying
    Zhang, Hui
    Zhang, Lei
    Chen, Tingting
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [37] Genome-wide identification of KCS gene family in Carya illinoinensis and their roles under abiotic stress conditions
    Wang, Haoyu
    He, Tengjie
    Huang, Chunying
    Wang, Ketao
    Shi, Duanshun
    Si, Xiaolin
    Xu, Yifan
    Lyu, Shiheng
    Huang, Jianqin
    Li, Yan
    SCIENTIA HORTICULTURAE, 2023, 321
  • [38] Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress
    Meng, Dong
    Li, Yuanyuan
    Bai, Yang
    Li, Mingjun
    Cheng, Lailiang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 103 : 71 - 83
  • [39] Genome-wide analysis of the maize superoxide dismutase (SOD) gene family reveals important roles in drought and salt responses
    Liu, Jing
    Xu, Lijuan
    Shang, Jian
    Hu, Xiaolin
    Yu, Haitao
    Wu, Hongying
    Lv, Wenben
    Zhao, Yang
    GENETICS AND MOLECULAR BIOLOGY, 2021, 44 (03)
  • [40] Genome-Wide Identification of the Brassinosteroid Signal Kinase Gene Family and Its Profiling under Salinity Stress
    Shi, Biao
    Wang, Youwu
    Wang, Liang
    Zhu, Shengwei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (15)