Kinetics of quantum reaction-diffusion systems

被引:0
|
作者
Gerbino, Federico [1 ]
Lesanovsky, Igor [2 ,3 ,4 ]
Perfetto, Gabriele [2 ]
机构
[1] Univ Paris Saclay, Lab Phys Theor & Modeles Stat, CNRS, F-91405 Orsay, France
[2] Eberhard Karls Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[4] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
来源
SCIPOST PHYSICS CORE | 2025年 / 8卷 / 01期
关键词
LIMITED REACTIONS; RENORMALIZATION; ANNIHILATION; DISSIPATION;
D O I
10.21468/SciPostPhysCore.8.1.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss many-body fermionic and bosonic systems subject to dissipative particle losses in arbitrary spatial dimensions d, within the Keldysh path-integral formulation of the quantum master equation. This open quantum dynamics represents a generalisation of classical reaction-diffusion dynamics to the quantum realm. We first show how initial conditions can be introduced in the Keldysh path integral via boundary terms. We then study binary annihilation reactions A+A -> 0, for which we derive a Boltzmann-like kinetic equation. The ensuing algebraic decay in time for the particle density depends on the particle statistics. In order to model possible experimental implementations with cold atoms, for fermions in d = 1 we further discuss inhomogeneous cases involving the presence of a trapping potential. In this context, we quantify the irreversibility of the dynamics studying the time evolution of the system entropy for different quenches of the trapping potential. We find that the system entropy features algebraic decay for confining quenches, while it saturates in deconfined scenarios.
引用
收藏
页数:54
相关论文
共 50 条
  • [31] Reaction-diffusion systems for hypothesis propagation
    Kubota, T
    Espinal, F
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 543 - 546
  • [32] Localized patterns in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    CHAOS, 2007, 17 (03)
  • [33] Distribution in flowing reaction-diffusion systems
    Kamimura, Atsushi
    Herrmann, Hans J.
    Ito, Nobuyasu
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [34] Controllability of shadow reaction-diffusion systems
    Hernandez-Santamaria, Victor
    Zuazua, Enrique
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) : 3781 - 3818
  • [35] Fluctuation in nonextensive reaction-diffusion systems
    Wu, Junlin
    Chen, Huaijun
    PHYSICA SCRIPTA, 2007, 75 (05) : 722 - 725
  • [36] Global optimization by reaction-diffusion systems
    Mikhailov, A.S.
    Tereshko, V.M.
    Proceedings of the International Conference on Artificial Neural Networks, 1991,
  • [37] Wave optics in reaction-diffusion systems
    Sainhas, J
    Dilao, R
    PHYSICAL REVIEW LETTERS, 1998, 80 (23) : 5216 - 5219
  • [38] Periodic kinks in reaction-diffusion systems
    J Phys A Math Gen, 3 (L67):
  • [39] Propagating fronts in reaction-diffusion systems
    Vives, D
    Armero, J
    Marti, A
    Ramirez-Piscina, L
    Casademunt, J
    Sancho, JM
    Sagues, F
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1998, 23 (1-2) : 239 - 260
  • [40] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    梅茗
    Acta Mathematica Scientia, 1989, (02) : 163 - 174