Kinetics of quantum reaction-diffusion systems

被引:0
|
作者
Gerbino, Federico [1 ]
Lesanovsky, Igor [2 ,3 ,4 ]
Perfetto, Gabriele [2 ]
机构
[1] Univ Paris Saclay, Lab Phys Theor & Modeles Stat, CNRS, F-91405 Orsay, France
[2] Eberhard Karls Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[4] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
来源
SCIPOST PHYSICS CORE | 2025年 / 8卷 / 01期
关键词
LIMITED REACTIONS; RENORMALIZATION; ANNIHILATION; DISSIPATION;
D O I
10.21468/SciPostPhysCore.8.1.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss many-body fermionic and bosonic systems subject to dissipative particle losses in arbitrary spatial dimensions d, within the Keldysh path-integral formulation of the quantum master equation. This open quantum dynamics represents a generalisation of classical reaction-diffusion dynamics to the quantum realm. We first show how initial conditions can be introduced in the Keldysh path integral via boundary terms. We then study binary annihilation reactions A+A -> 0, for which we derive a Boltzmann-like kinetic equation. The ensuing algebraic decay in time for the particle density depends on the particle statistics. In order to model possible experimental implementations with cold atoms, for fermions in d = 1 we further discuss inhomogeneous cases involving the presence of a trapping potential. In this context, we quantify the irreversibility of the dynamics studying the time evolution of the system entropy for different quenches of the trapping potential. We find that the system entropy features algebraic decay for confining quenches, while it saturates in deconfined scenarios.
引用
收藏
页数:54
相关论文
共 50 条
  • [21] NONLINEAR REACTION-DIFFUSION SCHEMES IN CONTINUOUS KINETICS
    GIONA, M
    GIUSTINIANI, M
    ADROVER, A
    PATIERNO, O
    CHEMICAL ENGINEERING COMMUNICATIONS, 1994, 128 : 173 - 196
  • [22] EFFECTIVE POTENTIAL APPROXIMATION TO REACTION-DIFFUSION KINETICS IN NONHOMOGENEOUS MEDIA - MICELLAR SYSTEMS
    BARZYKIN, AV
    TACHIYA, M
    JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (10): : 7762 - 7767
  • [23] MODELING OF DYNAMICAL REACTION-DIFFUSION SYSTEMS WITH MULTISTAGE AND NON-PERFECT KINETICS
    Musabekova, L. M.
    Kalbayeva, A. T.
    Dilman, V. V.
    Zhumataev, N. S.
    Kurakbayeva, S. D.
    Tauasarov, B. R.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES OF GEOLOGY AND TECHNICAL SCIENCES, 2019, (01): : 120 - 126
  • [24] On the formation of acceleration and reaction-diffusion wavefronts in autocatalytic-type reaction-diffusion systems
    Needham, DJ
    IMA JOURNAL OF APPLIED MATHEMATICS, 2006, 71 (03) : 446 - 458
  • [25] Spirals and targets in reaction-diffusion systems
    Bhattacharyay, A
    PHYSICAL REVIEW E, 2001, 64 (01): : 4 - 016113
  • [26] Nonequilibrium potential in reaction-diffusion systems
    Wio, HS
    FOURTH GRANADA LECTURES IN COMPUTATIONAL PHYSICS, 1997, 493 : 135 - 195
  • [27] Turbulent transport in reaction-diffusion systems
    Il'yn, A. S.
    Sirota, V. A.
    Zybin, K. P.
    PHYSICAL REVIEW E, 2019, 99 (05)
  • [28] Passivity of fractional reaction-diffusion systems
    Cao, Yan
    Zhou, Wei-Jie
    Liu, Xiao-Zhen
    Wu, Kai-Ning
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 476
  • [29] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    MEI, M
    ACTA MATHEMATICA SCIENTIA, 1989, 9 (02) : 163 - 174
  • [30] Reaction-Diffusion Systems and Nonlinear Waves
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 297 - 303