Kinetics of quantum reaction-diffusion systems

被引:0
作者
Gerbino, Federico [1 ]
Lesanovsky, Igor [2 ,3 ,4 ]
Perfetto, Gabriele [2 ]
机构
[1] Univ Paris Saclay, Lab Phys Theor & Modeles Stat, CNRS, F-91405 Orsay, France
[2] Eberhard Karls Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[4] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
来源
SCIPOST PHYSICS CORE | 2025年 / 8卷 / 01期
关键词
LIMITED REACTIONS; RENORMALIZATION; ANNIHILATION; DISSIPATION;
D O I
10.21468/SciPostPhysCore.8.1.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss many-body fermionic and bosonic systems subject to dissipative particle losses in arbitrary spatial dimensions d, within the Keldysh path-integral formulation of the quantum master equation. This open quantum dynamics represents a generalisation of classical reaction-diffusion dynamics to the quantum realm. We first show how initial conditions can be introduced in the Keldysh path integral via boundary terms. We then study binary annihilation reactions A+A -> 0, for which we derive a Boltzmann-like kinetic equation. The ensuing algebraic decay in time for the particle density depends on the particle statistics. In order to model possible experimental implementations with cold atoms, for fermions in d = 1 we further discuss inhomogeneous cases involving the presence of a trapping potential. In this context, we quantify the irreversibility of the dynamics studying the time evolution of the system entropy for different quenches of the trapping potential. We find that the system entropy features algebraic decay for confining quenches, while it saturates in deconfined scenarios.
引用
收藏
页数:54
相关论文
共 122 条
  • [21] Peliti L., Renormalisation of fluctuation effects in the A+A to A reaction, J. Phys. A: Math. Gen, 19, (1986)
  • [22] Lee B. P., Renormalization group calculation for the reaction kA to OE, J. Phys. A: Math. Gen, 27, (1994)
  • [23] Cardy J., Renormalisation group approach to reaction-diffusion problems
  • [24] Diehl S., Micheli A., Kantian A., Kraus B., Buchler H. P., Zoller P., Quantum states and phases in driven open quantum systems with cold atoms, Nat. Phys, 4, (2008)
  • [25] Diehl S., Rico E., Baranov M. A., Zoller P., Topology by dissipation in atomic quantum wires, Nat. Phys, 7, (2011)
  • [26] Tomadin A., Diehl S., Zoller P., Nonequilibrium phase diagram of a driven and dissipative many-body system, Phys. Rev. A, 83, (2011)
  • [27] Carollo F., Gnann M., Perfetto G., Lesanovsky I., Signatures of a quantum stabilized fluctuating phase and critical dynamics in a kinetically constrained open many-body system with two absorbing states, Phys. Rev. B, 106, (2022)
  • [28] Lesanovsky I., Garrahan J. P., Kinetic constraints, hierarchical relaxation, and onset of glassiness in strongly interacting and dissipative Rydberg gases, Phys. Rev. Lett, 111, (2013)
  • [29] Olmos B., Lesanovsky I., Garrahan J. P., Out-of-equilibrium evolution of kinetically constrained many-body quantum systems under purely dissipative dynamics, Phys. Rev. E, 90, (2014)
  • [30] Marcuzzi M., Buchhold M., Diehl S., Lesanovsky I., Absorbing state phase transition with competing quantum and classical fluctuations, Phys. Rev. Lett, 116, (2016)