Applying Neural Network to Health Estimation and Lifetime Prediction of Lithium-Ion Batteries

被引:3
|
作者
Li, Penghua [1 ]
Wu, Xiankui [2 ]
Grosu, Radu [3 ]
Hou, Jie [1 ]
Ilolov, Mamadsho [4 ]
Xiang, Sheng [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
[3] Vienna Univ Technol, Inst Comp Engn, A-1040 Vienna, Austria
[4] Natl Acad Sci Tajikistan, Ctr Innovat Dev Sci & New Technol, Dushanbe 734025, Tajikistan
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2025年 / 11卷 / 01期
基金
中国国家自然科学基金;
关键词
Batteries; Estimation; Aging; Reviews; Lithium-ion batteries; Electrolytes; Transportation; Artificial neural networks (ANNs); lithium-ion batteries; remaining useful life (RUL); state of health (SOH); REMAINING USEFUL LIFE; ELECTRODE-SOLUTION INTERACTIONS; RUL PREDICTION; SOH ESTIMATION; STATE; PROGNOSTICS; HYBRID; ONLINE; CHARGE; MODEL;
D O I
10.1109/TTE.2024.3457621
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, artificial neural networks (ANNs) have significantly advanced in both health estimation and lifetime prediction of lithium-ion batteries. The great success of ANNs stems primarily from their scalability in encoding large-scale data and maneuver billions of model parameters. However, there are still many challenges in balancing predictive accuracy and deployment feasibility. For instance, shallow ANNs are often more efficient but may sometimes sacrifice accuracy, whereas deep hybrid ANNs often achieve strong generalization capabilities, this comes with the trade-off of increased computational demands. To this end, this article presents a comprehensive survey of ANN-based paradigms for estimating state-of-health (SOH) and predicting the remaining useful life (RUL) of lithium-ion batteries. It covers battery aging mechanisms, available datasets, network architecture, training schemes, advanced machine learning (AML) algorithms, and performance comparison. Furthermore, challenges in battery health diagnosis are reviewed in detail, and comments on future research prospects are discussed and forwarded.
引用
收藏
页码:4224 / 4248
页数:25
相关论文
共 50 条
  • [21] Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification
    Lu, Yiqing
    Shi, Ye
    Liu, Yu
    Wang, Haoyu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, : 3666 - 3675
  • [22] A Generalizable Method for Capacity Estimation and RUL Prediction in Lithium-Ion Batteries
    Wang, Yixiu
    Zhu, Jiangong
    Cao, Liang
    Liu, Jianfeng
    You, Pufan
    Gopaluni, Bhushan
    Cao, Yankai
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 63 (01) : 345 - 357
  • [23] A deep learning method for online capacity estimation of lithium-ion batteries
    Shen, Sheng
    Sadoughi, Mohammadkazem
    Chen, Xiangyi
    Hong, Mingyi
    Hu, Chao
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [24] Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Network and Bat-Based Particle Filter
    Wu, Yi
    Li, Wei
    Wang, Youren
    Zhang, Kai
    IEEE ACCESS, 2019, 7 : 54843 - 54854
  • [25] A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries
    Tang, Aihua
    Jiang, Yihan
    Yu, Quanqing
    Zhang, Zhigang
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [26] A Robust and Simple Long Horizon Health Estimation of Lithium-ion Batteries Using NARX Recurrent Neural Network
    Bamati, Safieh
    Chaoui, Hicham
    Gualous, Hamid
    2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2022,
  • [27] Remaining useful life prediction for lithium-ion batteries using particle filter and artificial neural network
    Qin, Wei
    Lv, Huichun
    Liu, Chengliang
    Nirmalya, Datta
    Jahanshahi, Peyman
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2020, 120 (02) : 312 - 328
  • [28] Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural network
    Hu, Wangyang
    Zhao, Shaishai
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [29] State of Health Estimation of Lithium-Ion Batteries based on the CC-CV Charging Curve and Neural Network
    Siani, Ali Ghasemi
    Mousavi Badjani, Mehdi
    Rismani, Hadi
    Saeedimoghadam, Mojtaba
    IETE JOURNAL OF RESEARCH, 2023, 69 (05) : 2950 - 2963
  • [30] State of Health Estimation of Lithium-Ion Batteries Using Data Augmentation and Feature Mapping
    Yao, Wei
    Lai, Rucong
    Tian, Yong
    Li, Xiaoyu
    Tian, Jindong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 4895 - 4905