Applying Neural Network to Health Estimation and Lifetime Prediction of Lithium-Ion Batteries

被引:3
|
作者
Li, Penghua [1 ]
Wu, Xiankui [2 ]
Grosu, Radu [3 ]
Hou, Jie [1 ]
Ilolov, Mamadsho [4 ]
Xiang, Sheng [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
[3] Vienna Univ Technol, Inst Comp Engn, A-1040 Vienna, Austria
[4] Natl Acad Sci Tajikistan, Ctr Innovat Dev Sci & New Technol, Dushanbe 734025, Tajikistan
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2025年 / 11卷 / 01期
基金
中国国家自然科学基金;
关键词
Batteries; Estimation; Aging; Reviews; Lithium-ion batteries; Electrolytes; Transportation; Artificial neural networks (ANNs); lithium-ion batteries; remaining useful life (RUL); state of health (SOH); REMAINING USEFUL LIFE; ELECTRODE-SOLUTION INTERACTIONS; RUL PREDICTION; SOH ESTIMATION; STATE; PROGNOSTICS; HYBRID; ONLINE; CHARGE; MODEL;
D O I
10.1109/TTE.2024.3457621
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, artificial neural networks (ANNs) have significantly advanced in both health estimation and lifetime prediction of lithium-ion batteries. The great success of ANNs stems primarily from their scalability in encoding large-scale data and maneuver billions of model parameters. However, there are still many challenges in balancing predictive accuracy and deployment feasibility. For instance, shallow ANNs are often more efficient but may sometimes sacrifice accuracy, whereas deep hybrid ANNs often achieve strong generalization capabilities, this comes with the trade-off of increased computational demands. To this end, this article presents a comprehensive survey of ANN-based paradigms for estimating state-of-health (SOH) and predicting the remaining useful life (RUL) of lithium-ion batteries. It covers battery aging mechanisms, available datasets, network architecture, training schemes, advanced machine learning (AML) algorithms, and performance comparison. Furthermore, challenges in battery health diagnosis are reviewed in detail, and comments on future research prospects are discussed and forwarded.
引用
收藏
页码:4224 / 4248
页数:25
相关论文
共 50 条
  • [1] General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries
    Deng, Zhongwei
    Hu, Xiaosong
    Lin, Xianke
    Xu, Le
    Che, Yunhong
    Hu, Lin
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (03) : 1295 - 1306
  • [2] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [3] Capacity estimation method of lithium-ion batteries based on deep convolution neural network
    Song, Renwang
    Yang, Lei
    Chen, Linying
    Dong, Zengshou
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2022, 20 (02) : 119 - 125
  • [4] A Bayesian Mixture Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Zhang, Shuxin
    Liu, Zhitao
    Su, Hongye
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (04) : 4708 - 4721
  • [5] Degradation Curve Prediction of Lithium-Ion Batteries Based on Knee Point Detection Algorithm and Convolutional Neural Network
    Haris, Muhammad
    Hasan, Muhammad Noman
    Qin, Shiyin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries
    Bao, Xinyuan
    Chen, Liping
    Lopes, Antonio M.
    Li, Xin
    Xie, Siqiang
    Li, Penghua
    Chen, YangQuan
    ENERGY, 2023, 278
  • [7] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543
  • [8] SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators
    Jia, Jianfang
    Liang, Jianyu
    Shi, Yuanhao
    Wen, Jie
    Pang, Xiaoqiong
    Zeng, Jianchao
    ENERGIES, 2020, 13 (02)
  • [9] A White-Box Equivalent Neural Network Ensemble for Health Estimation of Lithium-Ion Batteries
    Ghosh, Nitika
    Garg, Akhil
    Warnecke, Alexander Johannes
    Gao, Liang
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 1863 - 1874
  • [10] A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction
    Elmahallawy, Mohamed
    Elfouly, Tarek
    Alouani, Ali
    Massoud, Ahmed M. M.
    IEEE ACCESS, 2022, 10 : 119040 - 119070