Multi-valued variational inequalities for variable exponent double phase problems: comparison and extremality results

被引:0
作者
Carl, Siegfried [1 ]
Le, Vy Khoi [2 ]
Winkert, Patrick [3 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Math, D-06099 Halle, Germany
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[3] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Comparison results; Discontinuous problems; Extremality results; Multi-valued variational inequalities; Musielak-Orlicz Sobolev space; Obstacle problem; Sub- and super-solution; Variable exponent double phase operator; ELLIPTIC-EQUATIONS; EXISTENCE; REGULARITY; MINIMIZERS; OPERATORS;
D O I
10.1007/s41808-025-00319-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and comparison results for multi-valued variational inequalities in a bounded domain Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} of the form u is an element of K:0 is an element of Au+partial derivative IK(u)+F(u)+F Gamma(u)inW1,H(Omega)& lowast;,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u\in K{:}\, 0 \in Au+\partial I_K(u)+{\mathcal {F}}(u)+{\mathcal {F}}_\Gamma (u)\quad \text {in }W<^>{1, {\mathcal {H}}}(\Omega )<^>*, \end{aligned}$$\end{document}where A:W1,H(Omega)-> W1,H(Omega)& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{:}\,W<^>{1, {\mathcal {H}}}(\Omega ) \rightarrow W<^>{1, {\mathcal {H}}}(\Omega )<^>*$$\end{document} given by Au:=-div|del u|p(x)-2 del u+mu(x)|del u|q(x)-2 del u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Au:=-\text {div}\left( |\nabla u|<^>{p(x)-2} \nabla u+ \mu (x) |\nabla u|<^>{q(x)-2} \nabla u\right) \end{aligned}$$\end{document}for u is an element of W1,H(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in W<^>{1, {\mathcal {H}}}(\Omega )$$\end{document}, is the double phase operator with variable exponents and W1,H(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1, {\mathcal {H}}}(\Omega )$$\end{document} is the associated Musielak-Orlicz Sobolev space. First, an existence result is proved under some weak coercivity condition. Our main focus aims at the treatment of the problem under consideration when coercivity fails. To this end we establish the method of sub-super-solution for the multi-valued variational inequality in the space W1,H(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1, {\mathcal {H}}}(\Omega )$$\end{document} based on appropriately defined sub- and super-solutions, which yields the existence of solutions within an ordered interval of sub-super-solution. Moreover, the existence of extremal solutions will be shown provided the closed, convex subset K of W1,H(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1, {\mathcal {H}}}(\Omega )$$\end{document} satisfies a lattice condition. As an application of the sub-super-solution method we are able to show that a class of generalized variational-hemivariational inequalities with a leading double phase operator are included as a special case of the multi-valued variational inequality considered here. Based on a fixed point argument, we also study the case when the corresponding Nemytskij operators F,F Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}, {\mathcal {F}}_\Gamma $$\end{document} need not be continuous. At the end, we give an example of the construction of sub- and supersolutions related to the problem above.
引用
收藏
页码:223 / 264
页数:42
相关论文
共 45 条
  • [1] Bahrouni A., Radulescu V.D., Winkert P., Double phase problems with variable growth and convection for the Baouendi–Grushin operator, Z. Angew. Math. Phys, 71, 6, (2020)
  • [2] Baroni P., Colombo M., Mingione G., Harnack inequalities for double phase functionals, Nonlinear Anal, 121, pp. 206-222, (2015)
  • [3] Baroni P., Colombo M., Mingione G., Regularity for general functionals with double phase, Calc. Var., 57, 2, (2018)
  • [4] Benslimane O., Aberqi A., Bennouna J., Existence results for double phase obstacle problems with variable exponents, J. Elliptic Parabol. Equ, 7, 2, pp. 875-890, (2021)
  • [5] Carl S., Signorini type variational inequality with state-dependent discontinuous multi-valued boundary operators, Nonlinear Anal, 92, pp. 138-152, (2013)
  • [6] Carl S., Heikkila S., Fixed Point Theory in Ordered Sets and Applications, (2011)
  • [7] Carl S., Heikkila S., Nonlinear Differential Equations in Ordered Spaces, (2000)
  • [8] Carl S., Le V.K., Elliptic inequalities with multi-valued operators: existence, comparison and related variational-hemivariational type inequalities, Nonlinear Anal, 121, pp. 130-152, (2015)
  • [9] Carl S., Le V.K., Extremal solutions of multi-valued variational inequalities in plane exterior domains, J. Differ. Equ, 267, 8, pp. 4863-4889, (2019)
  • [10] Carl S., Le V.K., Multi-valued variational inequalities in unbounded domains: existence, comparison and extremal solutions, Appl. Anal, 102, 7, pp. 2067-2096, (2023)