Large variability in permafrost degradation over the Northern Hemisphere

被引:0
作者
Hu, Guojie [1 ,2 ,3 ]
Zhao, Lin [1 ,4 ]
Zou, Defu [1 ,2 ]
Wu, Xiaodong [1 ,2 ]
Li, Ren [1 ,2 ]
Zhu, Xiaofan [1 ,2 ]
Su, Youqi [5 ]
Wu, Tonghua [1 ,2 ]
Wu, Yifan [1 ,3 ]
Ni, Jie [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, Cryosphere Res Stn Qinghai Tibet Plateau, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Cryospher Sci & Frozen Soil Engn, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China
[5] Chengdu Univ Informat Technol, Sch Atmospher Sci, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Permafrost; Active layer thickness; Ground temperature; Climate change; Northern Hemisphere; NEAR-SURFACE PERMAFROST; ACTIVE-LAYER THICKNESS; SOIL-TEMPERATURE; THERMAL REGIME; SNOW COVER; CLIMATE; MOUNTAINS; DYNAMICS; PLATEAU; SHRUB;
D O I
10.1016/j.catena.2024.108440
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Permafrost in the Northern Hemisphere has been degrading under climate change, affecting climatic, hydrological, and ecological systems. To reveal the temporal and spatial characteristics of permafrost degradation under climate change, we quantified permafrost thermal states and active layer thicknesses using observational data covering various periods and different areas of the Northern Hemisphere. The soil temperatures at 20 cm depth in the circumpolar Arctic permafrost regions were much lower than in the Qinghai-Tibet Plateau. The thaw period is 114 days in the circumpolar permafrost regions compared to 167 days in the Qinghai-Tibet Plateau. The active layer thickness (ALT) was largest in transitional permafrost regions and sporadic permafrost regions, and lowest in the high latitude permafrost regions and continuous permafrost regions, and the ALT generally exhibited an increasing trend. The average ALT was 1.7 m, and increased by 3.6 cm per year in the Northern Hemisphere. The mean annual ground temperature (MAGT) was largest in the high-altitude permafrost regions and isolated permafrost regions, and lowest in the high latitude permafrost regions and continuous permafrost regions. The warming rate of the MAGT was largest in the high latitude regions and lowest in the high altitude regions, and gradually increased from isolated permafrost regions to continuous permafrost regions, with an average warming rate of 0.3 degrees C per decade for the whole Northern Hemisphere. These findings provide important information for understanding the variability in permafrost degradation processes across different regions under climate change.
引用
收藏
页数:13
相关论文
共 72 条
[1]   Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness [J].
Aalto, J. ;
Karjalainen, O. ;
Hjort, J. ;
Luoto, M. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (10) :4889-4898
[2]  
Adiya S., 2021, Sci. Total Environ. 800 from 2010 to 2017
[3]   Permafrost is warming at a global scale [J].
Biskaborn, Boris K. ;
Smith, Sharon L. ;
Noetzli, Jeannette ;
Matthes, Heidrun ;
Vieira, Goncalo ;
Streletskiy, Dmitry A. ;
Schoeneich, Philippe ;
Romanovsky, Vladimir E. ;
Lewkowicz, Antoni G. ;
Abramov, Andrey ;
Allard, Michel ;
Boike, Julia ;
Cable, William L. ;
Christiansen, Hanne H. ;
Delaloye, Reynald ;
Diekmann, Bernhard ;
Drozdov, Dmitry ;
Etzelmueller, Bernd ;
Grosse, Guido ;
Guglielmin, Mauro ;
Ingeman-Nielsen, Thomas ;
Isaksen, Ketil ;
Ishikawa, Mamoru ;
Johansson, Margareta ;
Johannsson, Halldor ;
Joo, Anseok ;
Kaverin, Dmitry ;
Kholodov, Alexander ;
Konstantinov, Pavel ;
Kroeger, Tim ;
Lambiel, Christophe ;
Lanckman, Jean-Pierre ;
Luo, Dongliang ;
Malkova, Galina ;
Meiklejohn, Ian ;
Moskalenko, Natalia ;
Oliva, Marc ;
Phillips, Marcia ;
Ramos, Miguel ;
Sannel, A. Britta K. ;
Sergeev, Dmitrii ;
Seybold, Cathy ;
Skryabin, Pavel ;
Vasiliev, Alexander ;
Wu, Qingbai ;
Yoshikawa, Kenji ;
Zheleznyak, Mikhail ;
Lantuit, Hugues .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]  
Blunden J., 2020, Bull. Amer.Meteorological Soc., V101, pS1, DOI [10.1175/2020BAMSStateoftheClimate.1, DOI 10.1175/2020BAMSSTATEOFTHECLIMATE.1, 10.1175/2020BAMSStateoftheClimate]
[5]   A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges [J].
Boeckli, L. ;
Brenning, A. ;
Gruber, S. ;
Noetzli, J. .
CRYOSPHERE, 2012, 6 (01) :125-140
[6]   A 20-year record (1998-2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen) [J].
Boike, Julia ;
Juszak, Inge ;
Lange, Stephan ;
Chadburn, Sarah ;
Burke, Eleanor ;
Overduin, Pier Paul ;
Roth, Kurt ;
Ippisch, Olaf ;
Bornemann, Niko ;
Stern, Lielle ;
Gouttevin, Isabelle ;
Hauber, Ernst ;
Westermann, Sebastian .
EARTH SYSTEM SCIENCE DATA, 2018, 10 (01) :355-390
[7]   Thermal Characteristics and Recent Changes of Permafrost in the Upper Reaches of the Heihe River Basin, Western China [J].
Cao, Bin ;
Zhang, Tingjun ;
Peng, Xiaoqing ;
Mu, Cuicui ;
Wang, Qingfeng ;
Zheng, Lei ;
Wang, Kang ;
Zhong, Xinyue .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (15) :7935-7949
[8]   Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China [J].
Cao, Bin ;
Gruber, Stephan ;
Zhang, Tingjun ;
Li, Lili ;
Peng, Xiaoqing ;
Wang, Kang ;
Zheng, Lei ;
Shao, Wanwan ;
Guo, Hong .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2017, 122 (03) :574-591
[9]  
Chadburn SE, 2017, NAT CLIM CHANGE, V7, P340, DOI [10.1038/NCLIMATE3262, 10.1038/nclimate3262]
[10]  
[车涛 Che Tao], 2019, [中国科学院院刊, Bulletin of the Chinese Academy of Sciences], V34, P1247