ML-ILES: End-to-end optimization of data-driven high-order Godunov-type finite-volume schemes for compressible homogeneous isotropic turbulence

被引:1
作者
Bezgin, Deniz A. [1 ]
Buhendwa, Aaron B. [1 ]
Schmidt, Steffen J. [1 ]
Adams, Nikolaus A. [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Aerodynam & Fluid Mech, Sch Engn & Design, Boltzmannstr 15, D-85748 Garching, Germany
[2] Tech Univ Munich, Munich Inst Integrated Mat Energy & Proc Engn, Lichtenbergstr 4a, D-85748 Garching, Germany
关键词
Computational fluid dynamics; Machine learning; Implicit large-eddy simulations; Navier-Stokes equations; Compressible turbulence; Turbulence;
D O I
10.1016/j.jcp.2024.113560
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we present a data-driven high-order Godunov-type finite-volume scheme for machine-learned implicit large-eddy simulations (ML-ILES) of compressible homogeneous isotropic turbulence. For the simulation of compressible flows, many Godunov-type finite-volume schemes combine high-order shock-capturing schemes with approximate Riemann solvers. Here, we devise neural network-based reconstruction operators which are trained to best approximate turbulent subgrid-scales. In particular, we use separate reconstruction neural networks for each physical flow quantity and show that an optimal reconstruction for ILES may require different reconstruction strategies for different flow quantities. The neural networks used in the reconstruction operator are trained end-to-end, using the automatically differentiable JAX-Fluids CFD solver. The training data set comprises coarse-grained spatio-temporal trajectories of compressible temporally decaying homogeneous isotropic turbulence. Comparisons with established ILES discretizations show encouraging results.
引用
收藏
页数:18
相关论文
共 40 条
[1]   Implicit subgrid-scale modeling by adaptive deconvolution [J].
Adams, NA ;
Hickel, S ;
Franz, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 200 (02) :412-431
[2]  
[Anonymous], 1959, Matematiceskij sbornik
[3]   On the choice of wavespeeds for the HLLC Riemann solver [J].
Batten, P ;
Clarke, N ;
Lambert, C ;
Causon, DM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06) :1553-1570
[4]  
Baydin AG, 2018, J MACH LEARN RES, V18
[5]   Toward discretization-consistent closure schemes for large eddy simulation using reinforcement learning [J].
Beck, Andrea ;
Kurz, Marius .
PHYSICS OF FLUIDS, 2023, 35 (12)
[6]   Deep neural networks for data-driven LES closure models [J].
Beck, Andrea ;
Flad, David ;
Munz, Claus-Dieter .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
[7]  
Bezgin DA, 2024, Arxiv, DOI arXiv:2402.05193
[8]   JAX-Fluids: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows [J].
Bezgin, Deniz A. ;
Buhendwa, Aaron B. ;
Adams, Nikolaus A. .
COMPUTER PHYSICS COMMUNICATIONS, 2023, 282
[9]   A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks [J].
Bezgin, Deniz A. ;
Schmidt, Steffen J. ;
Adams, Nikolaus A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 437
[10]   An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws [J].
Borges, Rafael ;
Carmona, Monique ;
Costa, Bruno ;
Don, Wai Sun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (06) :3191-3211