A Tutorial on the Use of Physics-Informed Neural Networks to Compute the Spectrum of Quantum Systems

被引:1
|
作者
Brevi, Lorenzo [1 ]
Mandarino, Antonio [1 ]
Prati, Enrico [1 ]
机构
[1] Univ Milan, Dept Phys Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
关键词
deep learning; physics-informed neural networks; partial differential equations; Schr & ouml; dinger equation; APPROXIMATION;
D O I
10.3390/technologies12100174
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum many-body systems are of great interest for many research areas, including physics, biology, and chemistry. However, their simulation is extremely challenging, due to the exponential growth of the Hilbert space with system size, making it exceedingly difficult to parameterize the wave functions of large systems by using exact methods. Neural networks and machine learning, in general, are a way to face this challenge. For instance, methods like tensor networks and neural quantum states are being investigated as promising tools to obtain the wave function of a quantum mechanical system. In this tutorial, we focus on a particularly promising class of deep learning algorithms. We explain how to construct a Physics-Informed Neural Network (PINN) able to solve the Schr & ouml;dinger equation for a given potential, by finding its eigenvalues and eigenfunctions. This technique is unsupervised, and utilizes a novel computational method in a manner that is barely explored. PINNs are a deep learning method that exploit automatic differentiation to solve integro-differential equations in a mesh-free way. We show how to find both the ground and the excited states. The method discovers the states progressively by starting from the ground state. We explain how to introduce inductive biases in the loss to exploit further knowledge of the physical system. Such additional constraints allow for a faster and more accurate convergence. This technique can then be enhanced by a smart choice of collocation points in order to take advantage of the mesh-free nature of the PINN. The methods are made explicit by applying them to the infinite potential well and the particle in a ring, a challenging problem to be learned by an artificial intelligence agent due to the presence of complex-valued eigenfunctions and degenerate states
引用
收藏
页数:18
相关论文
共 50 条
  • [41] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [42] Physics-Informed Neural Networks for Power Systems Warm-Start Optimization
    Tudoras-Miravet, Alex
    Gonzalez-Iakl, Esteban
    Gomis-Bellmunt, Oriol
    Prieto-Araujo, Eduardo
    IEEE ACCESS, 2024, 12 : 135913 - 135928
  • [43] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171
  • [44] Adversarial uncertainty quantification in physics-informed neural networks
    Yang, Yibo
    Perdikaris, Paris
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 136 - 152
  • [45] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [46] Δ-PINNs: Physics-informed neural networks on complex geometries
    Costabal, Francisco Sahli
    Pezzuto, Simone
    Perdikaris, Paris
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [47] Stiff-PDEs and Physics-Informed Neural Networks
    Sharma, Prakhar
    Evans, Llion
    Tindall, Michelle
    Nithiarasu, Perumal
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 2929 - 2958
  • [48] Self-adaptive physics-informed neural networks
    McClenny, Levi D.
    Braga-Neto, Ulisses M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [49] Error Analysis of Physics-Informed Neural Networks (PINNs) in Typical Dynamical Systems
    Ying, Sia Jye
    Kheng, Goh Yong
    Hui, Liew How
    Fah, Chang Yun
    JURNAL FIZIK MALAYSIA, 2023, 44 (01): : 10044 - 10051
  • [50] Special Session: Physics-Informed Neural Networks for Securing Water Distribution Systems
    Falas, Solon
    Konstantinou, Charalambos
    Michael, Maria K.
    2020 IEEE 38TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2020), 2020, : 37 - 40