A Tutorial on the Use of Physics-Informed Neural Networks to Compute the Spectrum of Quantum Systems

被引:1
|
作者
Brevi, Lorenzo [1 ]
Mandarino, Antonio [1 ]
Prati, Enrico [1 ]
机构
[1] Univ Milan, Dept Phys Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
关键词
deep learning; physics-informed neural networks; partial differential equations; Schr & ouml; dinger equation; APPROXIMATION;
D O I
10.3390/technologies12100174
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum many-body systems are of great interest for many research areas, including physics, biology, and chemistry. However, their simulation is extremely challenging, due to the exponential growth of the Hilbert space with system size, making it exceedingly difficult to parameterize the wave functions of large systems by using exact methods. Neural networks and machine learning, in general, are a way to face this challenge. For instance, methods like tensor networks and neural quantum states are being investigated as promising tools to obtain the wave function of a quantum mechanical system. In this tutorial, we focus on a particularly promising class of deep learning algorithms. We explain how to construct a Physics-Informed Neural Network (PINN) able to solve the Schr & ouml;dinger equation for a given potential, by finding its eigenvalues and eigenfunctions. This technique is unsupervised, and utilizes a novel computational method in a manner that is barely explored. PINNs are a deep learning method that exploit automatic differentiation to solve integro-differential equations in a mesh-free way. We show how to find both the ground and the excited states. The method discovers the states progressively by starting from the ground state. We explain how to introduce inductive biases in the loss to exploit further knowledge of the physical system. Such additional constraints allow for a faster and more accurate convergence. This technique can then be enhanced by a smart choice of collocation points in order to take advantage of the mesh-free nature of the PINN. The methods are made explicit by applying them to the infinite potential well and the particle in a ring, a challenging problem to be learned by an artificial intelligence agent due to the presence of complex-valued eigenfunctions and degenerate states
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
    Djeumou, Franck
    Neary, Cyrus
    Goubault, Eric
    Putot, Sylvie
    Topcu, Ufuk
    Proceedings of Machine Learning Research, 2022, 168 : 263 - 277
  • [32] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [33] Robust quantum gates using smooth pulses and physics-informed neural networks
    Gungordu, Utkan
    Kestner, J. P.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [34] Exactly conservative physics-informed neural networks and deep operator networks for dynamical systems
    Cardoso-Bihlo, Elsa
    Bihlo, Alex
    NEURAL NETWORKS, 2025, 181
  • [35] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30
  • [36] Tackling the curse of dimensionality with physics-informed neural networks
    Hu, Zheyuan
    Shukla, Khemraj
    Karniadakis, George Em
    Kawaguchi, Kenji
    NEURAL NETWORKS, 2024, 176
  • [37] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    Nonlinear Dynamics, 2023, 111 : 15279 - 15291
  • [38] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    ANALYST, 2022, 147 (09) : 1881 - 1891
  • [39] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [40] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    FRONTIERS IN PHYSICS, 2020, 8