Prediction of Incident Atrial Fibrillation in Population with Ischemic Heart Disease Using Machine Learning with Radiomics and ECG Markers

被引:0
作者
Pujadas, Esmeralda Ruiz [1 ]
Aung, Nay [2 ,3 ]
Szabo, Liliana [2 ]
Raisi-Estabragh, Zahra [2 ]
Camacho, Marina [1 ]
Petersen, Steffen E. [2 ,3 ,4 ,5 ]
Gkontra, Polyxeni [1 ]
Lekadir, Karim [1 ,6 ]
机构
[1] Artificial Intelligence Med Lab BCN AIM, Dept Math & Comp Sci, Barcelona, Spain
[2] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, Charterhouse Sq, London EC1M 6BQ, England
[3] Barts Hlth NHS Trust, St Bartholomews Hosp, Barts Heart Ctr, London EC1M 6BQ, England
[4] Hlth Data Res UK, London, England
[5] Alan Turing Inst, London, England
[6] Inst Catalana Recerca & Estudis Avancats ICREA, Passeig Lluis Companys 23, Barcelona, Spain
来源
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, PT II, MIUA 2024 | 2024年 / 14860卷
基金
欧盟地平线“2020”; 英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
radiomics; ischemic heart disease; atrial fibrillation; machine learning; coronary artery disease; ARCHITECTURE;
D O I
10.1007/978-3-031-66958-3_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ischemic heart disease (IHD) is the main cause of death globally. The coexistence of IHD with atrial fibrillation (AF) can result in a reduced lifespan and severe disabilities. Despite the significant impact of AF on individuals with IHD, the underlying AF susceptibility mechanisms in IHD remain poorly understood. In this work, we propose machine learning (ML) techniques with CMR radiomics to detect incident AF among the IHD population. We used 12-leads Electrocardiograms as a reference, the most common tool for AF diagnosis. The best results were obtained using radiomics with Logistic Regression achieving an AUC of 0.72. Additionally, the rich phenotypic characterization of CMR imaging alterations may offer novel insights into differences in the cardiovascular disease patterns. The shape and textural features of the left atrium in end diastole were the most predominant markers. Our findings demonstrate the potential of combining CMR radiomics with ML to develop more effective early detection strategies for AF in patients with IHD and increase our understanding of AF susceptibility in IHD.
引用
收藏
页码:441 / 453
页数:13
相关论文
共 22 条
[1]   Genome-wide association analysis reveals insights into the genetic architecture of right ventricular structure and function [J].
Aung, Nay ;
Vargas, Jose D. ;
Yang, Chaojie ;
Fung, Kenneth ;
Sanghvi, Mihir M. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Manichaikul, Ani ;
Rotter, Jerome, I ;
Taylor, Kent D. ;
Lima, Joao A. C. ;
Bluemke, David A. ;
Kawut, Steven M. ;
Petersen, Steffen E. ;
Munroe, Patricia B. .
NATURE GENETICS, 2022, 54 (06) :783-+
[2]   Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development [J].
Aung, Nay ;
Vargas, Jose D. ;
Yang, Chaojie ;
Cabrera, Claudia P. ;
Warren, Helen R. ;
Fung, Kenneth ;
Tzanis, Evan ;
Barnes, Michael R. ;
Rotter, Jerome, I ;
Taylor, Kent D. ;
Manichaikul, Ani W. ;
Lima, Joao A. C. ;
Bluemke, David A. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Munroe, Patricia B. ;
Petersen, Steffen E. .
CIRCULATION, 2019, 140 (16) :1318-1330
[3]   Radiomics Signatures of Cardiovascular Risk Factors in Cardiac MRI: Results From the UK Biobank [J].
Cetin, Irem ;
Raisi-Estabragh, Zahra ;
Petersen, Steffen E. ;
Napel, Sandy ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Gonzalez Ballester, Miguel A. ;
Camara, Oscar ;
Lekadir, Karim .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[4]   Percutaneous coronary intervention and atrial fibrillation: the triple therapy dilemma [J].
Cho, Jung Rae ;
Angiolillo, Dominick J. .
JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2015, 39 (02) :203-208
[5]   MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation [J].
Ibtehaz, Nabil ;
Rahman, M. Sohel .
NEURAL NETWORKS, 2020, 121 :74-87
[6]   Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection [J].
Iizuka, N ;
Oka, M ;
Yamada-Okabe, H ;
Nishida, M ;
Maeda, Y ;
Mori, N ;
Takao, T ;
Tamesa, T ;
Tangoku, A ;
Tabuchi, H ;
Hamada, K ;
Nakayama, H ;
Ishitsuka, H ;
Miyamoto, T ;
Hirabayashi, A ;
Uchimura, S ;
Hamamoto, Y .
LANCET, 2003, 361 (9361) :923-929
[7]   Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study [J].
Khan, Moien A. B. ;
Hashim, Muhammad Jawad ;
Mustafa, Halla ;
Baniyas, May Yousif ;
Al Suwaidi, Shaikha Khalid Buti Mohamad ;
AlKatheeri, Rana ;
Alblooshi, Fatmah Mohamed Khalfan ;
Almatrooshi, Meera Eisa Ali Hassan ;
Alzaabi, Mariam Eisa Hazeem ;
Al Darmaki, Reem Saif ;
Lootah, Shamsa Nasser Ali Hussain .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (07)
[8]   Feature Selection in a Credit Scoring Model [J].
Laborda, Juan ;
Ryoo, Seyong .
MATHEMATICS, 2021, 9 (07)
[9]   Coronary heart disease and atrial fibrillation: a vicious cycle [J].
Liang, Feng ;
Wang, Yi .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2021, 320 (01) :H1-H12
[10]   Image-Based Cardiac Diagnosis With Machine Learning: A Review [J].
Martin-Isla, Carlos ;
Campello, Victor M. ;
Izquierdo, Cristian ;
Raisi-Estabragh, Zahra ;
Baessler, Bettina ;
Petersen, Steffen E. ;
Lekadir, Karim .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7