Maker-Breaker resolving game played on corona products of graphs

被引:0
|
作者
James, Tijo [1 ]
Klavzar, Sandi [2 ,3 ,4 ]
Kuziak, Dorota [5 ]
Savitha, K. S. [6 ]
Vijayakumar, Ambat [7 ]
机构
[1] Pavanatma Coll, Dept Math, Murickassery, India
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[5] Univ Cadiz, Dept Estadist & Invest Operat, Algeciras, Spain
[6] St Pauls Coll Kalamassery, Dept Math, Kochi, India
[7] Cochin Univ Sci & Technol, Dept Math, Kochi, India
关键词
Maker-breaker game; Resolving set; Maker-breaker resolving game; Maker-breaker resolving number; Corona product of graphs; METRIC DIMENSION;
D O I
10.1007/s00010-024-01132-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Maker-Breaker resolving game is a game played on a graph G by Resolver and Spoiler. The players taking turns alternately in which each player selects a not yet played vertex of G. The goal of Resolver is to select all the vertices in a resolving set of G, while that of Spoiler is to prevent this from happening. The outcome o(G) of the game played is one of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}$$\end{document}, S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}, and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}, where o(G)=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(G)=\mathcal {R}$$\end{document} (resp. o(G)=S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(G)=\mathcal {S}$$\end{document}), if Resolver (resp. Spoiler) has a winning strategy no matter who starts the game, and o(G)=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(G)=\mathcal {N}$$\end{document}, if the first player has a winning strategy. In this paper, the game is investigated on corona products G circle dot H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\odot H$$\end{document} of graphs G and H. It is proved that if o(H)is an element of{N,S}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(H)\in \{\mathcal {N}, \mathcal {S}\}$$\end{document}, then o(G circle dot H)=S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(G\odot H) = \mathcal {S}$$\end{document}. No such result is possible under the assumption o(H)=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(H) = \mathcal {R}$$\end{document}. It is proved that o(G circle dot Pk)=S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(G\odot P_k) = \mathcal {S}$$\end{document} if k=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=5$$\end{document}, otherwise o(G circle dot Pk)=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(G\odot P_k) = \mathcal {R}$$\end{document}, and that o(G circle dot Ck)=S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(G\odot C_k) = \mathcal {S}$$\end{document} if k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}, otherwise o(G circle dot Ck)=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(G\odot C_k) = \mathcal {R}$$\end{document}. Several results are also given on corona products in which the second factor is of diameter at most 2.
引用
收藏
页码:1221 / 1233
页数:13
相关论文
共 13 条
  • [1] Maker-Breaker domination game played on corona products of graphs
    Divakaran, Athira
    James, Tijo
    Klavzar, Sandi
    Nair, Latha S.
    QUAESTIONES MATHEMATICAE, 2024,
  • [2] Maker-Breaker Resolving Game
    Kang, Cong X.
    Klavzar, Sandi
    Yero, Ismael G.
    Yi, Eunjeong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2081 - 2099
  • [3] Maker-Breaker metric resolving games on graphs
    Kang, Cong X.
    Yi, Eunjeong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (02)
  • [4] Maker-Breaker domination game critical graphs
    Divakaran, Athira
    Dravec, Tanja
    James, Tijo
    Klavzar, Sandi
    Nair, Latha S.
    DISCRETE APPLIED MATHEMATICS, 2025, 368 : 126 - 134
  • [5] Maker-Breaker total domination game on cubic graphs
    Forcan, Jovana
    Mikalacki, Mirjana
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2022, 24 (01)
  • [6] Maker–Breaker Resolving Game
    Cong X. Kang
    Sandi Klavžar
    Ismael G. Yero
    Eunjeong Yi
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2081 - 2099
  • [7] The Maker-Breaker Largest Connected Subgraph game
    Bensmail, Julien
    Fioravantes, Foivos
    Inerney, Fionn Mc
    Nisse, Nicolas
    Oijid, Nacim
    THEORETICAL COMPUTER SCIENCE, 2023, 943 : 102 - 120
  • [8] Maker-Breaker domination game on trees when Staller wins
    Bujtas, Csilla
    Dokyeesun, Pakanun
    Klavzar, Sandi
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2023, 25 (02)
  • [9] Fast winning strategies for Staller in the Maker-Breaker domination game
    Bujtas, Csilla
    Dokyeesun, Pakanun
    DISCRETE APPLIED MATHEMATICS, 2024, 344 : 10 - 22
  • [10] MAKER-BREAKER GAMES ON Kω1 AND Kω,ω1
    Bowler, Nathan
    Gut, Florian
    Joo, Attila
    Pitz, Max
    JOURNAL OF SYMBOLIC LOGIC, 2023, 88 (02) : 697 - 703