Restoration of physiologic loading after engineered disc implantation mitigates immobilization-induced facet joint and paraspinal muscle degeneration

被引:0
作者
Gullbrand, Sarah E. [1 ,2 ]
Kiapour, Ali [3 ]
Barrett, Caitlin [1 ,2 ]
Fainor, Matthew [1 ,2 ]
Orozco, Brianna S. [1 ,2 ]
Hilliard, Rachel [4 ]
Mauck, Robert L. [1 ,2 ,5 ]
Hast, Michael W. [1 ]
Schaer, Thomas P. [4 ]
Smith, Harvey E. [1 ,2 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Orthopaed Surg, McKay Orthopaed Res Lab, Philadelphia, PA USA
[2] Corporal Michael J Crescenz VA Med Ctr, Translat Musculoskeletal Res Ctr, Philadelphia, PA USA
[3] Harvard Med Sch, Massachusetts Gen Hosp, Dept Neurosurg, Boston, MA USA
[4] Univ Penn, New Bolton Ctr, Sch Vet Med, Dept Clin Studies, Philadelphia, PA USA
[5] Univ Penn, Dept Bioengn, Philadelphia, PA USA
关键词
Disc tissue engineering; Large animal model; Finite element model; Remobilization; INTERVERTEBRAL DISC; ARTICULAR-CARTILAGE; LUMBAR SPINE; REPLACEMENT; MODEL; SHEEP; COMPRESSION; MOTION;
D O I
10.1016/j.actbio.2024.12.014
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Intervertebral disc degeneration is commonly associated with back and neck pain, and standard surgical treatments do not restore spine function. Replacement of the degenerative disc with a living, tissue-engineered construct has the potential to restore normal structure and function to the spine. Toward this goal, our group developed endplate-modified disc-like angle-ply structures (eDAPS) that recapitulate the native structure and function of the disc. While our initial large animal studies utilized rigid internal fixation of the eDAPS implanted level to ensure retention of the eDAPS, chronic immobilization does not restore full function and is detrimental to the spinal motion segment. The purpose of this study was to utilize a goat cervical disc replacement model coupled with finite element modeling of goat cervical motion segments to investigate the effects of remobilization (removal of fixation) on the eDAPS, the facet joints and the adjacent paraspinal muscle. Our results demonstrated that chronic immobilization caused notable degeneration of the facet joints and paraspinal muscles adjacent to eDAPS implants. Remobilization improved eDAPS composition and integration and mitigated, but did not fully reverse, facet joint osteoarthritis and paraspinal muscle atrophy and fibrosis. Finite element modeling revealed that these changes were likely due to reduced range of motion and reduced facet loading, highlighting the importance of maintaining normal spine biomechanical function with any tissue engineered disc replacement. Statement of significance: Back and neck pain are ubiquitous in modern society, and the gold standard surgical treatment of spinal fusion limits patient function. This study advances our understanding of the response of the spinal motion segment to tissue engineered disc replacement with provisional fixation in a large animal model, further advancing the clinical translation of this technology.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 75 条
  • [1] Stanaway J.D., Afshin A., Gakidou E., Lim S.S., Abate D., Abate K.H., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., Abdollahpour I., Abdulkader R.S., Abebe M., Abebe Z., Abera S.F., Abil O.Z., Abraha H.N., Abrham A.R., Abu-Raddad L.J., Abu-Rmeileh N.M., Accrombessi M.M.K., Acharya D., Acharya P., Adamu A.A., Adane A.A., Adebayo O.M., Adedoyin R.A., Adekanmbi V., Ademi Z., Adetokunboh O.O., Adib M.G., Admasie A., Adsuar J.C., Afanvi K.A., Afarideh M., Agarwal G., A
  • [2] Lo J., Chan L., Flynn S., A systematic review of the incidence, prevalence, costs, and activity and work limitations of amputation, osteoarthritis, rheumatoid arthritis, back pain, multiple sclerosis, spinal cord injury, stroke, and traumatic brain injury in the United States: A 2019 Update, Arch. Phys. Med. Rehabil., 102, pp. 115-131, (2021)
  • [3] Hartvigsen J., Hancock M.J., Kongsted A., Louw Q., Ferreira M.L., Genevay S., Hoy D., Karppinen J., Pransky G., Sieper J., Smeets R.J., Underwood M., Buchbinder R., Hartvigsen J., Cherkin D., Foster N.E., Maher C.G., Underwood M., van Tulder M., Anema J.R., Chou R., Cohen S.P., Costa L.M., Croft P., Ferreira M., Ferreira P.H., Fritz J.M., Genevay S., Gross D.P., Hancock M.J., Hoy D., Karppinen J., Koes B.W., Kongsted A., Louw Q., Oberg B., Peul W.C., Pransky G., Schoene M., Sieper J., Smeets R.
  • [4] Haefeli M., Kalberer F., Saegesser D., Nerlich A.G., Boos N., Paesold G., The course of macroscopic degeneration in the human lumbar intervertebral disc, Spine, 31, pp. 1522-1531, (2006)
  • [5] Gopal D., Ho A.L., Shah A., Chi J.H., Molecular basis of intervertebral disc degeneration, Adv. Exp. Med. Biol., 760, pp. 114-133, (2012)
  • [6] Raj P.P., Intervertebral disc: anatomy-physiology-pathophysiology-treatment, Pain Prac., 8, pp. 18-44, (2008)
  • [7] Yang J.Y., Lee J.-K., Song H.-S., The impact of adjacent segment degeneration on the clinical outcome after lumbar spinal fusion, Spine, 33, pp. 503-507, (2008)
  • [8] Patel A.A., Brodke D.S., Pimenta L., Bono C.M., Hilibrand A.S., Harrop J.S., Riew K.D., Youssef J.A., Vaccaro A.R., Revision strategies in lumbar total disc arthroplasty, Spine, 33, pp. 1276-1283, (2008)
  • [9] Kurtz S.M., Lau E., Ianuzzi A., Schmier J., Todd L., Isaza J., Albert T.J., National revision burden for lumbar total disc replacement in the united states: epidemiologic and economic perspectives, Spine, 35, (2010)
  • [10] Perfetti D.C., Galina J.M., Derman P.B., Guyer R.D., Ohnmeiss D.D., Satin A.M., Risk factors for reoperation after lumbar total disc replacement at short-, mid-, and long-term follow-up, The Spine J., 21, pp. 1110-1117, (2021)