Hyers-Ulam and Hyers-Ulam-Rassias Stability for a Class of Fractional Evolution Differential Equations with Neutral Time Delay

被引:1
作者
Alharbi, Kholoud N.
机构
[1] Ist Applicazioni Calcolo, CNR Via Taurini 19, I-00185 Rome, Italy
[2] Ist Nazl Alta Matemat Francesco Severi, Piazzale Aldo Moro 5, I-00185 Rome, Italy
来源
SYMMETRY-BASEL | 2025年 / 14卷 / 01期
关键词
mixed fractional derivative; mild solution; neutral fractional equation; Hyers-Ulam stability; Hyers-Ulam-Rassias stability;
D O I
10.3390/axioms14010043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we demonstrate that neutral fractional evolution equations with finite delay possess a stable mild solution. Our model incorporates a mixed fractional derivative that combines the Riemann-Liouville and Caputo fractional derivatives with orders 0<alpha<1 and 1= Cb for b is an element of V. These inequalities are obtained by "scalarizing" X >= Cb via cone duality and then by minimizing the classical univariate Cantelli's bound over the scalarized inequalities. Three diverse applications to random matrices, tails of linear images of random vectors, and network homophily are also given.
引用
收藏
页数:18
相关论文
共 20 条
[1]   Second-order moments of the size of randomly induced subgraphs of given order [J].
Apollonio, Nicola .
DISCRETE APPLIED MATHEMATICS, 2024, 355 :46-56
[2]   Network homophily via tail inequalities [J].
Apollonio, Nicola ;
Franciosa, Paolo G. ;
Santoni, Daniele .
PHYSICAL REVIEW E, 2023, 108 (05)
[3]  
BenArous G, 1997, PROBAB THEORY REL, V108, P517
[4]   What is the Probability that a Random Integral Quadratic Form in n Variables has an Integral Zero? [J].
Bhargava, Manjul ;
Cremona, John E. ;
Fisher, Tom ;
Jones, Nick G. ;
Keating, Jonathan P. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (12) :3828-3848
[5]  
Boyd Stephen, 2004, CONVEX OPTIMIZATION
[6]   Tail probabilities of random linear functions of regularly varying random vectors [J].
Das, Bikramjit ;
Fasen-Hartmann, Vicky ;
Klueppelberg, Claudia .
EXTREMES, 2022, 25 (04) :721-758
[7]   Large deviations of extreme eigenvalues of random matrices [J].
Dean, David S. ;
Majumdar, Satya N. .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[8]  
Eaton M. L., 2007, Multivariate statistics: a vector space approach, V53
[9]  
Edelman A, 2005, ACT NUMERIC, V14, P233, DOI 10.1017/S0962492904000236
[10]  
FIEDLER M, 1973, CZECH MATH J, V23, P298