Dynamics of systems with varying number of particles: From Liouville equations to general master equations for open systems

被引:1
作者
del Razo, Mauricio J. [1 ,2 ]
Delle Site, Luigi [1 ]
机构
[1] Free Univ Berlin, Dept Math & Comp Sci, Berlin, Germany
[2] Zuse Inst Berlin, Berlin, Germany
关键词
NONEQUILIBRIUM STATISTICAL-MECHANICS; KOOPMAN OPERATOR; MOTION;
D O I
10.21468/SciPostPhys.18.1.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A varying number of particles is one of the most relevant characteristics of systems of interest in nature and technology, ranging from the exchange of energy and matter with the surrounding environment to the change of particle number through internal dynamics such as reactions. The physico-mathematical modeling of these systems is extremely challenging, with the major difficulty being the time dependence of the number of degrees of freedom and the additional constraint that the increment or reduction of the number and species of particles must not violate basic physical laws. Theoretical models, in such a case, represent the key tool for the design of computational strategies for numerical studies that deliver trustful results. In this manuscript, we review complementary physico-mathematical approaches of varying number of particles inspired by rather different specific numerical goals. As a result of the analysis on the underlying common structure of these models, we propose a unifying master equation for general dynamical systems with varying number of particles. This equation embeds all the previous models and can potentially model a much larger range of complex systems, ranging from molecular to social agent-based dynamics.
引用
收藏
页数:26
相关论文
共 75 条
[1]   Multi-scale dynamics of the interaction between waves and mean flows: From nonlinear WKB theory to gravity-wave parameterizations in weather and climate models [J].
Achatz, U. ;
Kim, Y. -h. ;
Voelker, G. S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (11)
[2]   Molecular dynamics in a grand ensemble: Bergmann-Lebowitz model and adaptive resolution simulation [J].
Agarwal, Animesh ;
Zhu, Jinglong ;
Hartmann, Carsten ;
Wang, Han ;
Delle Site, Luigi .
NEW JOURNAL OF PHYSICS, 2015, 17
[3]  
Anderson DF, 2011, DESIGN AND ANALYSIS OF BIOMOLECULAR CIRCUITS:ENGINEERING APPROACHES TO SYSTEMS AND SYNTHETIC BIOLOGY, P3, DOI 10.1007/978-1-4419-6766-4_1
[4]   The extremal process of branching Brownian motion [J].
Arguin, Louis-Pierre ;
Bovier, Anton ;
Kistler, Nicola .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) :535-574
[5]   STOCHASTIC PARAMETERIZATION Toward a New View of Weather and Climate Models [J].
Berner, Judith ;
Achatz, Ulrich ;
Batte, Lauriane ;
Bengtsson, Lisa ;
de la Camara, Alvaro ;
Christensen, Hannah M. ;
Colangeli, Matteo ;
Coleman, Danielle R. B. ;
Crommelin, Daaaan ;
Dolaptchiev, Stamen I. ;
Franzke, Christian L. E. ;
Friederichs, Petra ;
Imkeller, Peter ;
Jarvinen, Heikki ;
Juricke, Stephan ;
Kitsios, Vassili ;
Lott, Francois ;
Lucarini, Valerio ;
Mahajan, Salil ;
Palmer, Timothy N. ;
Penland, Cecile ;
Sakradzija, Mirjana ;
von Storch, Jin-Song ;
Weisheimer, Antje ;
Weniger, Michael ;
Williams, Paul D. ;
Yano, Jun-Ichi .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (03) :565-587
[6]   Stochastic switching in biology: from genotype to phenotype [J].
Bressloff, Paul C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (13)
[7]  
Britton T, 2019, LECT NOTES MATH, V2255, P1, DOI 10.1007/978-3-030-30900-8
[8]   Modern Koopman Theory for Dynamical Systems [J].
Brunton, Steven L. ;
Budisic, Marko ;
Kaiser, Eurika ;
Kutz, J. Nathan .
SIAM REVIEW, 2022, 64 (02) :229-340
[9]   Statistical physics of social dynamics [J].
Castellano, Claudio ;
Fortunato, Santo ;
Loreto, Vittorio .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :591-646
[10]   Human mobility and innovation spreading in ancient times: a stochastic agent-based simulation approach [J].
Conrad, Natasa Djurdjevac ;
Helfmann, Luzie ;
Zonker, Johannes ;
Winkelmann, Stefanie ;
Schuette, Christof .
EPJ DATA SCIENCE, 2018, 7