An approach for accurate identification and monitoring of species in mangrove forests based on multi-source spectral data and deep learning

被引:0
作者
Erandi, Monterrubio-Martinez [1 ]
Rubicel, Trujillo-Acatitla [2 ,3 ]
Jose, Tuxpan-Vargas [1 ,4 ]
Patricia, Moreno-Casasola [5 ]
机构
[1] Inst Potosino Invest Cient & Tecnol AC, Div Geociencias Aplicadas, Camino Presa San Jose 2055,Colonia Lomas 4ta Secc, San Luis Potosi 78216, Mexico
[2] Inst Potosino Invest Cient & Tecnol AC, Ctr Nacl Supercomp, Camino Presa San Jose 2055,Colonia Lomas 4ta Secc, San Luis Potosi 78216, Mexico
[3] Inst Potosino Invest Cient & Tecnol AC, Grp Ciencia & Ingn Computac, Camino Presa San Jose 2055,Colonia Lomas 4ta Secc, San Luis Potosi 78216, Mexico
[4] CONAHCYT, Mexico City, Mexico
[5] Inst Ecol AC, Carretera Antigua Coatepec 351, Xalapa 91073, Veracruz, Mexico
关键词
Mapping; Mangrove detection; Mangrove species segmentation; Multisource spectral data; Deep learning; THEMATIC MAPPER; CLASSIFICATION; MODEL;
D O I
10.1016/j.ecoinf.2024.102961
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The mangroves conservation is essential due to the wide range of goods and ecosystem services. Despite their importance, mangrove distribution has drastically decreased in recent decades, highlighting the need to enhanced conservation efforts through innovative monitoring methods. Accordingly, this study presents an approach that integrates remote sensing data in a study area with a diverse range of ecological scenarios, comprising monospecific mangrove forests, which are dominated by a single species and mixed mangroves with flooded freshwater forested wetlands. First, the integration of photogrammetric analysis from unmanned aerial vehicles (UAVs) enables the precise determination of the spatial distribution of mangrove forests. Furthermore, the multispectral data obtained from the Sentinel-2 satellite was employed for the training of multilayer perceptron models (MLP) that are capable of accurately mapping mixed and monospecific mangrove forests. The computational experiments for MLP models involve different number of neurons and hidden layers. The best models for detecting mangrove forest achieved an accuracy of 99.95 % for training and 99.8 % for test, while for monospecific mangrove forest, at the species level, it attained an accuracy of 98.73 % for training and 96.84 % for test, in both cases the models demonstrated a great performance test for segmentation of different kind of mangrove forests. By leveraging multi-source data and the capabilities of remote sensing and artificial intelligence technologies, this approach offers a groundbreaking solution for monitoring mangrove ecosystems. Also, this minimizes the economic and human efforts and reduces risk of error, thus leading to more efficient and effective ecosystem conservation.
引用
收藏
页数:14
相关论文
共 59 条
  • [1] Mangrove species mapping through phenological analysis using random forest algorithm on Google Earth Engine
    Aji, Muhammad Ari Purnomo
    Kamal, Muhammad
    Farda, Nur Mohammad
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 30
  • [2] [Anonymous], EUROPEAN SPACE AGENC
  • [3] Arun Prasad K., 2014, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, VII-8, P45, DOI [10.5194/isprsannals-ii-8-45-2014, DOI 10.5194/ISPRSANNALS-II-8-45-2014]
  • [4] THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION
    Atwood, W. B.
    Abdo, A. A.
    Ackermann, M.
    Althouse, W.
    Anderson, B.
    Axelsson, M.
    Baldini, L.
    Ballet, J.
    Band, D. L.
    Barbiellini, G.
    Bartelt, J.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bederede, D.
    Bellardi, F.
    Bellazzini, R.
    Berenji, B.
    Bignami, G. F.
    Bisello, D.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bogart, J. R.
    Bonamente, E.
    Bonnell, J.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Busetto, G.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Carius, S.
    Carlson, P.
    Casandjian, J. M.
    Cavazzuti, E.
    Ceccanti, M.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Chipaux, R.
    Cillis, A. N.
    Ciprini, S.
    [J]. ASTROPHYSICAL JOURNAL, 2009, 697 (02) : 1071 - 1102
  • [5] Predictive performance of random forest on the identification of mangrove species in arid environments
    Avina-Hernandez, Judith
    Ramirez-Vargas, Mariana
    Roque-Sosa, Francisco
    Martinez-Rincon, Raul O.
    [J]. ECOLOGICAL INFORMATICS, 2023, 75
  • [6] Recent advances in mangrove studies using remote sensing data
    Blasco, F
    Gauquelin, T
    Rasolofoharinoro, M
    Denis, J
    Aizpuru, M
    Caldairou, V
    [J]. MARINE AND FRESHWATER RESEARCH, 1998, 49 (04) : 287 - 296
  • [7] Mapping Mangrove Using a Red-Edge Mangrove Index (REMI) Based on Sentinel-2 Multispectral Images
    Chen, Zhaojun
    Zhang, Meng
    Zhang, Huaiqing
    Liu, Yang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] Chollet F, 2021, Deep Learning with Python
  • [9] Assessment of land use, land cover change in the mangrove forest of Ghogha area, Gulf of Khambhat, Gujarat
    Chopade, Madhuri R.
    Mahajan, Seema
    Chaube, Nilima
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [10] Chowdhury MS., 2024, ENV CHALL, V14, P100800, DOI [10.1016/j.envc.2023.100800, DOI 10.1016/J.ENVC.2023.100800]