Ultra-high lithium reversibility achieved by partially pyrolyzed polymeric copper phthalocyanines for superior anode-free lithium metal batteries

被引:0
作者
Bae, Minjun [1 ]
Kim, Yoonbin [2 ]
Kim, Yonghwan [1 ]
Chang, Yujin [1 ]
Choi, Juhyung [3 ]
Hwang, Seon Jae [3 ]
Kim, Jun Su [4 ]
Park, Ho Seok [4 ]
Lee, Jeongyeon [3 ]
Piao, Yuanzhe [1 ,3 ]
机构
[1] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Appl Bioengn, 145 Gwanggyo Ro, Suwon 16229, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, Convergence Res Ctr Energy & Environm Sci, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[3] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Transdisciplinary Studies, 145 Gwanggyo Ro, Suwon 16229, Gyeonggi Do, South Korea
[4] Sungkyunkwan Univ, Sch Chem Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
关键词
Copper phthalocyanines; Partial pyrolysis; Anode-free batteries; Lithium metal batteries; DENDRITE-FREE; ELECTROLYTE; PERFORMANCE; CHALLENGES; INTERFACE; OPPORTUNITIES; FLUORIDE; LAYER; LIFE;
D O I
10.1016/j.ensm.2025.104058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anode-free lithium metal batteries (AFLMB) can maximize the energy density by eliminating active materials, conductive agents and binders from the anode. However, intrinsic issues of lithium (Li) metal anodes, such as non-uniform Li growth, large volume changes and unstable solid electrolyte interphase (SEI), become much pronounced, rapidly degrading the cyclability of AFLMB. Herein, we present a superior three-dimensional (3D) AFLMB host, which takes advantage of partially decomposed polymeric copper phthalocyanines bridged by dithioether linkers (CuPPc-S) as an ultra-thin surface coating layer. By intensive material characterizations alongside in-situ thermal gravimetric analyses coupled with mass spectrometer, we demonstrate that our controlled pyrolysis results in the formation of partially pyrolyzed CuPPc-S (PP-CuPPc-S), where intrinsic redox active sites of CuPPc-S and newly formed ultra-fine Cu-S inorganic compounds co-exist. The preserved redox active sites can not only improve lithiophilicity, but also facilitate the decomposition of TFSi-, inducing abundant LiF in the SEI, while Cu-S compounds can serve dual roles as active Li nucleation sites and ionically conductive Li2S inducer in the SEI. Benefiting from these components, PP-CuPPc-S coated carbon fiber (PP-CuPPc-S@CF) can form a multifunctional SEI and induce dense Li nucleation, achieving the stable operation of 1000 cycles with a LiFePO4 cathode in AFLMB configuration.
引用
收藏
页数:15
相关论文
共 62 条
[1]   Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte - A key to enhancing the rate capability of lithium-ion batteries [J].
Abe, T ;
Sagane, F ;
Ohtsuka, M ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) :A2151-A2154
[2]   Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles [J].
Ayiania, Michael ;
Weiss-Hortala, Elsa ;
Smith, Matthew ;
McEwen, Jean-Sabin ;
Garcia-Perez, Manuel .
CARBON, 2020, 167 :559-574
[3]   Synergistic Regulation of Intrinsic Lithiophilicity and Mass Transport Kinetics of Non-Lithium-Alloying Nucleation Sites for Stable Operation of Low N/P Ratio Lithium Metal Batteries [J].
Bae, Minjun ;
Park, Sung-Joon ;
Kim, Minki ;
Kwon, Eunji ;
Yu, Seungho ;
Choi, Juhyung ;
Chang, Yujin ;
Kim, Yonghwan ;
Choi, Yoon Jeong ;
Hong, Hwichan ;
Lin, Liwei ;
Zhang, Wang ;
Park, Seungman ;
Maeng, Ji Young ;
Park, Jungjin ;
Lee, Seung-Yong ;
Yu, Seung-Ho ;
Piao, Yuanzhe .
ADVANCED ENERGY MATERIALS, 2024, 14 (17)
[4]   Lithiophilic pore-gradient structured and oxygen-enriched carbon fiber as dense lithium nucleation enabler for stable lithium metal batteries [J].
Bae, Minjun ;
Kim, Yonghwan ;
Choi, Juhyung ;
Park, Seungman ;
Lin, Liwei ;
Yoo, Taehyun ;
Hong, Hwichan ;
Jung, Dayun ;
Piao, Yuanzhe .
CARBON, 2022, 196 :663-675
[5]   Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode [J].
Chen, Hao ;
Pei, Allen ;
Lin, Dingchang ;
Xie, Jin ;
Yang, Ankun ;
Xu, Jinwei ;
Lin, Kaixiang ;
Wang, Jiangyan ;
Wang, Hansen ;
Shi, Feifei ;
Boyle, David ;
Cui, Yi .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[6]   Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes [J].
Chen, Xiang ;
Chen, Xiao-Ru ;
Hou, Ting-Zheng ;
Li, Bo-Quan ;
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhang, Qiang .
SCIENCE ADVANCES, 2019, 5 (02)
[7]   Review on Li Deposition in Working Batteries: From Nucleation to Early Growth [J].
Chen, Xiao-Ru ;
Zhao, Bo-Chen ;
Yan, Chong ;
Zhang, Qiang .
ADVANCED MATERIALS, 2021, 33 (08)
[8]   A Diffusion-Reaction Competition Mechanism to Tailor Lithium Deposition for Lithium-Metal Batteries [J].
Chen, Xiao-Ru ;
Yao, Yu-Xing ;
Yan, Chong ;
Zhang, Rui ;
Cheng, Xin-Bing ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (20) :7743-7747
[9]   Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy [J].
Cheng, Ju-Hsiang ;
Assegie, Addisu Alemayehu ;
Huang, Chen-Jui ;
Lin, Min-Hsien ;
Tripathi, Alok Mani ;
Wang, Chun-Chieh ;
Tang, Mau-Tsu ;
Song, Yen-Fang ;
Su, Wei-Nien ;
Hwang, Bing Joe .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (14) :7761-7766
[10]   Highly Reversible Lithium Host Materials for High-Energy-Density Anode-Free Lithium Metal Batteries [J].
Cho, Sungjin ;
Kim, Dong Yeon ;
Lee, Jung-In ;
Kang, Jisu ;
Lee, Hyeongseok ;
Kim, Gahyun ;
Seo, Dong-Hwa ;
Park, Soojin .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (47)